Open In App

Inplace rotate square matrix by 90 degrees | Set 1

Last Updated : 21 Nov, 2023
Improve
Improve
Like Article
Like
Save
Share
Report

Given a square matrix, turn it by 90 degrees in an anti-clockwise direction without using any extra space

Examples: 

Input:
Matrix:    1  2  3
               4  5  6
               7  8  9

Output:  3  6  9 
               2  5  8 
               1  4  7 

Input:
Matrix:    1  2  3  4 
               5  6  7  8 
               9 10 11 12 
              13 14 15 16 

Output:  4  8 12 16 
               3  7 11 15 
               2  6 10 14 
               1  5  9 13

Note: An approach that requires extra space is already discussed here.

Example no1 – Inplace rotate square matrix by 90 degrees by forming cycles:

To solve the problem follow the below idea:

To solve the question without any extra space, rotate the array in form of squares, dividing the matrix into squares or cycles. For example, 
A 4 X 4 matrix will have 2 cycles. The first cycle is formed by its 1st row, last column, last row, and 1st column. The second cycle is formed by the 2nd row, second-last column, second-last row, and 2nd column. The idea is for each square cycle, to swap the elements involved with the corresponding cell in the matrix in an anti-clockwise direction i.e. from top to left, left to bottom, bottom to right, and from right to top one at a time using nothing but a temporary variable to achieve this

Dry run of the above approach:

First Cycle:

 1  2  3 4 
  6  7
 9 10 11 12 
13 14 15 16 

Moving first group of four elements (elements 
of 1st row, last row, 1st column and last column) of first cycle 
in counter clockwise. 

 4  2  3 16
 5  6  7
 9 10 11 12 
 1 14  15 13 

 Moving next group of four elements of 
first cycle in counter clockwise 

 4  8  3 16 
 5  6  7  15  
 2  10 11 12 
 1  14  9 13 

Moving final group of four elements of 
first cycle in counter clockwise 

 4  8 12 16 
 3  6  7 15 
 2 10 11 14 
 1  5  9 13 

Second Cycle:

 4  8 12 16 
 3  6 7  15 
 2  10 11 14 
 1  5  9 13 

Fixing second cycle

 4  8 12 16 
 3  7 11 15 
 2  6 10 14 
 1  5  9 13

Follow the given steps to solve the problem:

  • There are N/2 squares or cycles in a matrix of side N. Process a square one at a time. Run a loop to traverse the matrix a cycle at a time, i.e loop from 0 to N/2 – 1, loop counter is i
  • Consider elements in group of 4 in current square, rotate the 4 elements at a time. So the number of such groups in a cycle is N – 2*i.
  • So run a loop in each cycle from x to N – x – 1, loop counter is y
  • The elements in the current group is (x, y), (y, N-1-x), (N-1-x, N-1-y), (N-1-y, x), now rotate the these 4 elements, i.e (x, y) <- (y, N-1-x), (y, N-1-x)<- (N-1-x, N-1-y), (N-1-x, N-1-y)<- (N-1-y, x), (N-1-y, x)<- (x, y)
  • Print the matrix.

Below is the implementation of the above approach:

C++




// C++ program to rotate a matrix
// by 90 degrees
#include <bits/stdc++.h>
#define N 4
using namespace std;
 
// An Inplace function to
// rotate a N x N matrix
// by 90 degrees in
// anti-clockwise direction
void rotateMatrix(int mat[][N])
{
    // Consider all squares one by one
    for (int x = 0; x < N / 2; x++) {
        // Consider elements in group
        // of 4 in current square
        for (int y = x; y < N - x - 1; y++) {
            // Store current cell in
            // temp variable
            int temp = mat[x][y];
 
            // Move values from right to top
            mat[x][y] = mat[y][N - 1 - x];
 
            // Move values from bottom to right
            mat[y][N - 1 - x] = mat[N - 1 - x][N - 1 - y];
 
            // Move values from left to bottom
            mat[N - 1 - x][N - 1 - y] = mat[N - 1 - y][x];
 
            // Assign temp to left
            mat[N - 1 - y][x] = temp;
        }
    }
}
 
// Function to print the matrix
void displayMatrix(int mat[N][N])
{
    for (int i = 0; i < N; i++) {
        for (int j = 0; j < N; j++) {
            cout << mat[i][j] << " ";
        }
        cout << endl;
    }
    cout << endl;
}
 
/* Driver code */
int main()
{
    // Test Case 1
    int mat[N][N] = { { 1, 2, 3, 4 },
                      { 5, 6, 7, 8 },
                      { 9, 10, 11, 12 },
                      { 13, 14, 15, 16 } };
 
    // Function call
    rotateMatrix(mat);
 
    // Print rotated matrix
    displayMatrix(mat);
 
    return 0;
}


Java




// Java program to rotate a
// matrix by 90 degrees
import java.io.*;
 
class GFG {
    // An Inplace function to
    // rotate a N x N matrix
    // by 90 degrees in
    // anti-clockwise direction
    static void rotateMatrix(int N, int mat[][])
    {
        // Consider all squares one by one
        for (int x = 0; x < N / 2; x++) {
            // Consider elements in group
            // of 4 in current square
            for (int y = x; y < N - x - 1; y++) {
                // Store current cell in
                // temp variable
                int temp = mat[x][y];
 
                // Move values from right to top
                mat[x][y] = mat[y][N - 1 - x];
 
                // Move values from bottom to right
                mat[y][N - 1 - x]
                    = mat[N - 1 - x][N - 1 - y];
 
                // Move values from left to bottom
                mat[N - 1 - x][N - 1 - y]
                    = mat[N - 1 - y][x];
 
                // Assign temp to left
                mat[N - 1 - y][x] = temp;
            }
        }
    }
 
    // Function to print the matrix
    static void displayMatrix(int N, int mat[][])
    {
        for (int i = 0; i < N; i++) {
            for (int j = 0; j < N; j++)
                System.out.print(" " + mat[i][j]);
 
            System.out.print("\n");
        }
        System.out.print("\n");
    }
 
    /* Driver code*/
    public static void main(String[] args)
    {
        int N = 4;
 
        int mat[][] = { { 1, 2, 3, 4 },
                        { 5, 6, 7, 8 },
                        { 9, 10, 11, 12 },
                        { 13, 14, 15, 16 } };
 
        // Function call
        rotateMatrix(N, mat);
 
        // Print rotated matrix
        displayMatrix(N, mat);
    }
}
 
// This code is contributed by Prakriti Gupta


Python3




# Python3 program to rotate a matrix by 90 degrees
N = 4
 
# An Inplace function to rotate
# N x N matrix by 90 degrees in
# anti-clockwise direction
 
 
def rotateMatrix(mat):
 
    # Consider all squares one by one
    for x in range(0, int(N / 2)):
 
        # Consider elements in group
        # of 4 in current square
        for y in range(x, N-x-1):
 
            # store current cell in temp variable
            temp = mat[x][y]
 
            # move values from right to top
            mat[x][y] = mat[y][N-1-x]
 
            # move values from bottom to right
            mat[y][N-1-x] = mat[N-1-x][N-1-y]
 
            # move values from left to bottom
            mat[N-1-x][N-1-y] = mat[N-1-y][x]
 
            # assign temp to left
            mat[N-1-y][x] = temp
 
 
# Function to print the matrix
def displayMatrix(mat):
 
    for i in range(0, N):
 
        for j in range(0, N):
 
            print(mat[i][j], end=' ')
        print("")
 
 
# Driver Code
if __name__ == "__main__":
    mat = [[0 for x in range(N)] for y in range(N)]
 
    mat = [[1, 2, 3, 4],
           [5, 6, 7, 8],
           [9, 10, 11, 12],
           [13, 14, 15, 16]]
 
    # Function call
    rotateMatrix(mat)
 
    # Print rotated matrix
    displayMatrix(mat)
 
 
# This code is contributed by saloni1297


C#




// C# program to rotate a
// matrix by 90 degrees
using System;
 
class GFG {
    // An Inplace function to
    // rotate a N x N matrix
    // by 90 degrees in anti-
    // clockwise direction
    static void rotateMatrix(int N, int[, ] mat)
    {
        // Consider all
        // squares one by one
        for (int x = 0; x < N / 2; x++) {
            // Consider elements
            // in group of 4 in
            // current square
            for (int y = x; y < N - x - 1; y++) {
                // store current cell
                // in temp variable
                int temp = mat[x, y];
 
                // move values from
                // right to top
                mat[x, y] = mat[y, N - 1 - x];
 
                // move values from
                // bottom to right
                mat[y, N - 1 - x]
                    = mat[N - 1 - x, N - 1 - y];
 
                // move values from
                // left to bottom
                mat[N - 1 - x, N - 1 - y]
                    = mat[N - 1 - y, x];
 
                // assign temp to left
                mat[N - 1 - y, x] = temp;
            }
        }
    }
 
    // Function to print the matrix
    static void displayMatrix(int N, int[, ] mat)
    {
        for (int i = 0; i < N; i++) {
            for (int j = 0; j < N; j++)
                Console.Write(" " + mat[i, j]);
            Console.WriteLine();
        }
        Console.WriteLine();
    }
 
    // Driver Code
    static public void Main()
    {
        int N = 4;
 
        int[, ] mat = { { 1, 2, 3, 4 },
                        { 5, 6, 7, 8 },
                        { 9, 10, 11, 12 },
                        { 13, 14, 15, 16 } };
 
        // Function call
        rotateMatrix(N, mat);
 
        // Print rotated matrix
        displayMatrix(N, mat);
    }
}
 
// This code is contributed by ajit


Javascript




<script>
// Javascript program to rotate a
// matrix by 90 degrees
 
    // An Inplace function to
    // rotate a N x N matrix
    // by 90 degrees in
    // anti-clockwise direction
    function rotateMatrix(N,mat)
    {
     
        // Consider all squares one by one
        for (let x = 0; x < N / 2; x++)
        {
         
            // Consider elements in group
            // of 4 in current square
            for (let y = x; y < N - x - 1; y++)
            {
             
                // Store current cell in
                // temp variable
                let temp = mat[x][y];
   
                // Move values from right to top
                mat[x][y] = mat[y][N - 1 - x];
   
                // Move values from bottom to right
                mat[y][N - 1 - x]
                    = mat[N - 1 - x][N - 1 - y];
   
                // Move values from left to bottom
                mat[N - 1 - x][N - 1 - y] = mat[N - 1 - y][x];
   
                // Assign temp to left
                mat[N - 1 - y][x] = temp;
            }
        }
    }
     
    // Function to print the matrix
    function displayMatrix(N,mat)
    {
        for (let i = 0; i < N; i++)
        {
            for (let j = 0; j < N; j++)
                document.write(
                    " " + mat[i][j]);
   
            document.write("<br>");
        }
        document.write("<br>");
    }
     
    /* Driver program to test above functions */
    let N = 4;
    let mat=[[1, 2, 3, 4],[ 5, 6, 7, 8 ],[9, 10, 11, 12 ],[13, 14, 15, 16]];
     
    // displayMatrix(mat);
    rotateMatrix(N, mat);
 
    // Print rotated matrix
    displayMatrix(N, mat);
     
    // This code is contributed by rag2127. 
</script>


PHP




<?php
// PHP program to rotate a
// matrix by 90 degrees
$N = 4;
 
// An Inplace function to
// rotate a N x N matrix
// by 90 degrees in
// anti-clockwise direction
function rotateMatrix(&$mat)
{
    global $N;
     
    // Consider all
    // squares one by one
    for ($x = 0; $x < $N / 2; $x++)
    {
        // Consider elements
        // in group of 4 in
        // current square
        for ($y = $x;
             $y < $N - $x - 1; $y++)
        {
            // store current cell
            // in temp variable
            $temp = $mat[$x][$y];
 
            // move values from
            // right to top
            $mat[$x][$y] = $mat[$y][$N - 1 - $x];
 
            // move values from
            // bottom to right
            $mat[$y][$N - 1 - $x] =
                $mat[$N - 1 - $x][$N - 1 - $y];
 
            // move values from
            // left to bottom
            $mat[$N - 1 - $x][$N - 1 - $y] =
                         $mat[$N - 1 - $y][$x];
 
            // assign temp to left
            $mat[$N - 1 - $y][$x] = $temp;
        }
    }
}
 
// Function to
// print the matrix
function displayMatrix(&$mat)
{
    global $N;
    for ($i = 0; $i < $N; $i++)
    {
        for ($j = 0; $j < $N; $j++)
            echo $mat[$i][$j] . " ";
 
        echo "\n";
    }
    echo "\n";
}
 
// Driver code
 
$mat array(array(1, 2, 3, 4),
              array(5, 6, 7, 8),
              array(9, 10, 11, 12),
              array(13, 14, 15, 16));
 
// Function call
rotateMatrix($mat);
 
// Print rotated matrix
displayMatrix($mat);
 
// This code is contributed
// by ChitraNayal
?>


Output

4 8 12 16 
3 7 11 15 
2 6 10 14 
1 5 9 13 

Time Complexity: O(N2), where n is the side of the array. A single traversal of the matrix is needed.
Auxiliary Space: O(1). As a constant space is needed

Example no 2 – Inplace rotate square matrix by 90 degrees by transposing and reversing the matrix:

Follow the given steps to solve the problem:

Below is the implementation of the above approach:

C++




// C++ program to rotate a matrix
// by 90 degrees
#include <bits/stdc++.h>
using namespace std;
#define N 4
 
// An Inplace function to
// rotate a N x N matrix
// by 90 degrees in
// anti-clockwise direction
void rotateMatrix(int mat[][N])
{ // REVERSE every row
    for (int i = 0; i < N; i++)
        reverse(mat[i], mat[i] + N);
 
    // Performing Transpose
    for (int i = 0; i < N; i++) {
        for (int j = i; j < N; j++)
            swap(mat[i][j], mat[j][i]);
    }
}
 
// Function to print the matrix
void displayMatrix(int mat[N][N])
{
    for (int i = 0; i < N; i++) {
        for (int j = 0; j < N; j++) {
            cout << mat[i][j] << " ";
        }
        cout << endl;
    }
    cout << endl;
}
 
/* Driver code */
int main()
{
    int mat[N][N] = { { 1, 2, 3, 4 },
                      { 5, 6, 7, 8 },
                      { 9, 10, 11, 12 },
                      { 13, 14, 15, 16 } };
 
    // Function call
    rotateMatrix(mat);
 
    // Print rotated matrix
    displayMatrix(mat);
 
    return 0;
}


Java




// Java program to rotate a
// matrix by 90 degrees
import java.io.*;
 
class GFG {
 
    // Function to reverse
    // the given 2D arr[][]
    static void Reverse(int i, int mat[][], int N)
    {
        // Initialise start and end index
        int start = 0;
        int end = N - 1;
 
        // Till start < end, swap the element
        // at start and end index
        while (start < end) {
 
            // Swap the element
            int temp = mat[i][start];
            mat[i][start] = mat[i][end];
            mat[i][end] = temp;
 
            // Increment start and decrement
            // end for next pair of swapping
            start++;
            end--;
        }
    }
 
    // An Inplace function to
    // rotate a N x N matrix
    // by 90 degrees in
    // anti-clockwise direction
 
    static void rotateMatrix(int N, int mat[][])
    { // REVERSE every row
        for (int i = 0; i < N; i++)
            Reverse(i, mat, N);
 
        // Performing Transpose
        for (int i = 0; i < N; i++) {
            for (int j = i; j < N; j++) {
                int temp = mat[i][j];
                mat[i][j] = mat[j][i];
                mat[j][i] = temp;
            }
        }
    }
 
    // Function to print the matrix
    static void displayMatrix(int N, int mat[][])
    {
        for (int i = 0; i < N; i++) {
            for (int j = 0; j < N; j++)
                System.out.print(" " + mat[i][j]);
 
            System.out.print("\n");
        }
        System.out.print("\n");
    }
 
    /* Driver code*/
    public static void main(String[] args)
    {
        int N = 4;
 
        int mat[][] = { { 1, 2, 3, 4 },
                        { 5, 6, 7, 8 },
                        { 9, 10, 11, 12 },
                        { 13, 14, 15, 16 } };
 
        // Function call
        rotateMatrix(N, mat);
 
        // Print rotated matrix
        displayMatrix(N, mat);
    }
}
 
// This code is contributed by Aarti_Rathi


Python3




# Python program to rotate
# a matrix by 90 degrees
 
 
def rotateMatrix(mat):
 
    # reversing the matrix
    for i in range(len(mat)):
        mat[i].reverse()
 
    # make transpose of the matrix
    for i in range(len(mat)):
        for j in range(i, len(mat)):
 
            # swapping mat[i][j] and mat[j][i]
            mat[i][j], mat[j][i] = mat[j][i], mat[i][j]
 
 
# Function to print the matrix
def displayMatrix(mat):
 
    for i in range(0, len(mat)):
        for j in range(0, len(mat)):
            print(mat[i][j], end=' ')
        print()
 
 
# Driver code
if __name__ == "__main__":
    mat = [[1, 2, 3, 4],
           [5, 6, 7, 8],
           [9, 10, 11, 12],
           [13, 14, 15, 16]]
 
    # Function call
    rotateMatrix(mat)
 
    # Print rotated matrix
    displayMatrix(mat)
 
# This code is contributed by shivambhagat02(CC).


C#




// C# program to rotate a
// matrix by 90 degrees
using System;
 
class GFG {
    // Reverse each row of matrix
    static void reverse(int N, int[, ] mat)
    {
        // Traverse each row of [,]mat
        for (int i = 0; i < N; i++) {
 
            // Initialise start and end index
            int start = 0;
            int end = N - 1;
 
            // Till start < end, swap the element
            // at start and end index
            while (start < end) {
 
                // Swap the element
                int temp = mat[i, start];
                mat[i, start] = mat[i, end];
                mat[i, end] = temp;
 
                // Increment start and decrement
                // end for next pair of swapping
                start++;
                end--;
            }
        }
    }
    // An Inplace function to
    // rotate a N x N matrix
    // by 90 degrees in anti-
    // clockwise direction
    static void rotateMatrix(int N, int[, ] mat)
    {
        reverse(N, mat);
 
        // Performing Transpose
        for (int i = 0; i < N; i++) {
            for (int j = i; j < N; j++) {
                int temp = mat[i, j];
                mat[i, j] = mat[j, i];
                mat[j, i] = temp;
            }
        }
    }
 
    // Function to print the matrix
    static void displayMatrix(int N, int[, ] mat)
    {
        for (int i = 0; i < N; i++) {
            for (int j = 0; j < N; j++)
                Console.Write(mat[i, j] + " ");
            Console.Write("\n");
        }
    }
 
    // Driver Code
    static public void Main()
    {
        int N = 4;
 
        int[, ] mat = { { 1, 2, 3, 4 },
                        { 5, 6, 7, 8 },
                        { 9, 10, 11, 12 },
                        { 13, 14, 15, 16 } };
 
        // Function call
        rotateMatrix(N, mat);
 
        // Print rotated matrix
        displayMatrix(N, mat);
    }
}
 
// This code is contributed by Aarti_Rathi


Javascript




<script>
 
// JavaScript program to rotate
// a matrix by 90 degrees
function rotateMatrix(mat){
 
    // reversing the matrix
    for(let i = 0; i < mat.length; i++){
        mat[i].reverse()
    }
     
    // make transpose of the matrix
    for(let i = 0; i < mat.length; i++){
        for(let j = i; j < mat.length; j++){
 
            // swapping mat[i][j] and mat[j][i]
            let temp = mat[i][j]
            mat[i][j] = mat[j][i]
            mat[j][i] = temp
        }
    }
}
 
// Function to print the matrix
function displayMatrix(mat){
 
    for(let i = 0; i < mat.length; i++){
        for(let j = 0; j < mat.length; j++){
            document.write(mat[i][j],' ')
        }
        document.write("</br>")
    }
}
 
 
let mat = [[1, 2, 3, 4],
    [5, 6, 7, 8],
    [9, 10, 11, 12],
    [13, 14, 15, 16]]
 
rotateMatrix(mat)
 
// Print rotated matrix
displayMatrix(mat)
 
// This code is contributed by shinjanpatra
 
</script>


Output

4 8 12 16 
3 7 11 15 
2 6 10 14 
1 5 9 13 

Time Complexity: O(N2) + O(N2)  where N is the size of the array.
Auxiliary Space: O(1). As a constant space is needed

Example no 3 – Implementation by using Vectors in c++

Input - Matrix

1 2 3
4 5 6
7 8 9

Algorithmic steps for implementation –

the algorithmic steps to in-place rotate a square matrix by 90 degrees:

  1. Transpose the matrix: For each element matrix[i][j] where i < j, swap it with the element matrix[j][i].
  2. Reverse each row of the matrix: For each row i of the matrix, reverse the order of the elements by swapping matrix[i][j] with matrix[i][n – j – 1] where n is the number of columns in the matrix.
  3. The matrix is now rotated by 90 degrees in place.

Note: The first step transforms the matrix into its transposed form, and the second step reverses the elements in each row, resulting in a rotation of the matrix by 90 degrees.

 Program –

C++




#include <iostream>
#include <vector>
 
using namespace std;
 
void rotateMatrix(vector<vector<int>> &matrix) {
  int n = matrix.size();
 
  // transpose the matrix
  for (int i = 0; i < n; i++) {
    for (int j = i; j < n; j++) {
      swap(matrix[i][j], matrix[j][i]);
    }
  }
 
  // reverse each column
  for (int i = 0; i < n; i++) {
    for (int j = 0; j < n / 2; j++) {
      swap(matrix[j][i], matrix[n - j - 1][i]);
    }
  }
}
 
int main() {
  vector<vector<int>> matrix = {{1, 2, 3}, {4, 5, 6}, {7, 8, 9}};
  rotateMatrix(matrix);
 
  for (int i = 0; i < matrix.size(); i++) {
    for (int j = 0; j < matrix[0].size(); j++) {
      cout << matrix[i][j] << " ";
    }
    cout << endl;
  }
 
  return 0;
}


Java




public class RotateMatrix {
    public static void rotateMatrix(int[][] matrix)
    {
        int n = matrix.length;
 
        // transpose the matrix
        for (int i = 0; i < n; i++) {
            for (int j = i; j < n; j++) {
                swap(matrix, i, j, j, i);
            }
        }
 
        // reverse each column
        for (int i = 0; i < n; i++) {
            for (int j = 0; j < n / 2; j++) {
                swap(matrix, j, i, n - j - 1, i);
            }
        }
    }
 
    private static void swap(int[][] matrix, int i, int j,
                             int k, int l)
    {
        int temp = matrix[i][j];
        matrix[i][j] = matrix[k][l];
        matrix[k][l] = temp;
    }
    // driver program
    public static void main(String[] args)
    {
        int[][] matrix
            = { { 1, 2, 3 }, { 4, 5, 6 }, { 7, 8, 9 } };
        rotateMatrix(matrix);
 
        for (int i = 0; i < matrix.length; i++) {
            for (int j = 0; j < matrix[0].length; j++) {
                System.out.print(matrix[i][j] + " ");
            }
            System.out.println();
        }
    }
}


Python3




# Python program for the above approach
def rotateMatrix(matrix):
    n = len(matrix)
     
    # transpose the matrix
    for i in range(n):
        for j in range(i,n):
            temp = matrix[i][j]
            matrix[i][j] = matrix[j][i]
            matrix[j][i] = temp
         
    # reverse each column
    for i in range(n):
        for j in range (int(n/2)):
            temp = matrix[n-j-1][i]
            matrix[n-j-1][i] = matrix[j][i]
            matrix[j][i] = temp
         
# driver program
matrix = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
rotateMatrix(matrix)
for i in range(len(matrix)):
    for j in range(len(matrix[0])):
        print(matrix[i][j], end=" ")
    print("")
     
    # THIS CODE IS CONTRIBUTED BY YASH AGARWAL(YASHAGARWAL23121999)


C#




using System;
using System.Collections.Generic;
 
class Gfg
{
  static void RotateMatrix(List<List<int>> matrix)
  {
    int n = matrix.Count;
    // Transpose the matrix
    for (int i = 0; i < n; i++)
    {
      for (int j = i; j < n; j++)
      {
        int temp = matrix[i][j];
        matrix[i][j] = matrix[j][i];
        matrix[j][i] = temp;
      }
    }
 
    // Reverse each column
    for (int i = 0; i < n; i++)
    {
      for (int j = 0; j < n / 2; j++)
      {
        int temp = matrix[j][i];
        matrix[j][i] = matrix[n - j - 1][i];
        matrix[n - j - 1][i] = temp;
      }
    }
  }
 
  static void Main(string[] args)
  {
    List<List<int>> matrix = new List<List<int>> { new List<int> { 1, 2, 3 }, new List<int> { 4, 5, 6 }, new List<int> { 7, 8, 9 } };
    RotateMatrix(matrix);
 
    for (int i = 0; i < matrix.Count; i++)
    {
      for (int j = 0; j < matrix[0].Count; j++)
      {
        Console.Write(matrix[i][j] + " ");
      }
      Console.WriteLine();
    }
 
    Console.ReadLine();
  }
}


Javascript




// JavaScript program for the above approach
function rotateMatrix(matrix){
    let n = matrix.length;
     
    // transpose the matrix
    for(let i = 0; i<n; i++){
        for(let j = i; j<n; j++){
            let temp = matrix[i][j];
            matrix[i][j] = matrix[j][i];
            matrix[j][i] = temp;
        }
    }
     
    // reverse each column
    for(let i = 0; i<n; i++){
        for(let j = 0; j<n/2; j++){
            temp = matrix[n - j - 1][i];
            matrix[n - j - 1][i] = matrix[j][i];
            matrix[j][i] = temp;
        }
    }
}
 
 
// driver program
let matrix = [[1, 2, 3], [4, 5, 6], [7, 8, 9]];
rotateMatrix(matrix);
for(let i = 0; i<matrix.length; i++){
    for(let j = 0; j<matrix[0].length; j++){
        console.log(matrix[i][j] + " ");
    }
    console.log("<br>");
}
 
// THIS CODE IS CONTRIBUTED BY YASH AGARWAL(YASHAGAWRAL2852002)


Output

3 6 9 
2 5 8 
1 4 7 

Explanation –

  • In this implementation, the rotateMatrix function takes a 2D vector matrix as input and rotates the matrix by 90 degrees in the anticlockwise direction in place.
    The first step is to transpose the matrix, which is done by swapping the elements matrix[i][j] and matrix[j][i] for i < j.
    The second step is to reverse each column of the matrix, which is done by swapping the elements matrix[j][i] and matrix[n – j – 1][i] where n is the number of rows in the matrix.
  • The time complexity of this algorithm is O(n^2), where n is the number of rows (and columns) in the matrix. This is because the algorithm performs a constant amount of work for each element in the matrix.
  • The Auxiliary Space needed for this algorithm is O(1), since no extra space is used.

Exercise: Turn the 2D matrix by 90 degrees in a clockwise direction without using extra space.
Rotate a matrix by 90 degrees without using any extra space | Set 2

This article is contributed by Aditya Goel.  



Like Article
Suggest improvement
Previous
Next
Share your thoughts in the comments

Similar Reads