Open In App

Possible moves of knight

Last Updated : 20 Mar, 2023
Improve
Improve
Like Article
Like
Save
Share
Report

Given a chess board of dimension m * n. Find number of possible moves where knight can be moved on a chessboard from given position. If mat[i][j] = 1 then the block is filled by something else, otherwise empty. Assume that board consist of all pieces of same color, i.e., there are no blocks being attacked. 

Examples: 

Input : mat[][] = {{1, 0, 1, 0},
                   {0, 1, 1, 1},
                   {1, 1, 0, 1},
                   {0, 1, 1, 1}}
        pos = (2, 2)
Output : 4
Knight can moved from (2, 2) to (0, 1), (0, 3), 
(1, 0) and (3, 0).

We can observe that knight on a chessboard moves either: 

  1. Two moves horizontal and one move vertical 
  2. Two moves vertical and one move horizontal

The idea is to store all possible moves of knight and then count the number of valid moves. A move will be invalid if: 

  1. A block is already occupied by another piece. 
  2. Move is out of the chessboard.

Implementation:

C++




// CPP program to find number of possible moves of knight
#include <bits/stdc++.h>
#define n 4
#define m 4
using namespace std;
 
// To calculate possible moves
int findPossibleMoves(int mat[n][m], int p, int q)
{
    // All possible moves of a knight
    int X[8] = { 2, 1, -1, -2, -2, -1, 1, 2 };
    int Y[8] = { 1, 2, 2, 1, -1, -2, -2, -1 };
 
    int count = 0;
 
    // Check if each possible move is valid or not
    for (int i = 0; i < 8; i++) {
 
        // Position of knight after move
        int x = p + X[i];
        int y = q + Y[i];
 
        // count valid moves
        if (x >= 0 && y >= 0 && x < n && y < m
            && mat[x][y] == 0)
            count++;
    }
 
    // Return number of possible moves
    return count;
}
 
// Driver program to check findPossibleMoves()
int main()
{
    int mat[n][m] = { { 1, 0, 1, 0 },
                      { 0, 1, 1, 1 },
                      { 1, 1, 0, 1 },
                      { 0, 1, 1, 1 } };
 
    int p = 2, q = 2;
 
    cout << findPossibleMoves(mat, p, q);
 
    return 0;
}


Java




// Java program to find number of possible moves of knight
public class Main {
public static final int n = 4;
public static final int m = 4;
 
    // To calculate possible moves
    static int findPossibleMoves(int mat[][], int p, int q)
    {
        // All possible moves of a knight
        int X[] = { 2, 1, -1, -2, -2, -1, 1, 2 };
        int Y[] = { 1, 2, 2, 1, -1, -2, -2, -1 };
 
        int count = 0;
 
        // Check if each possible move is valid or not
        for (int i = 0; i < 8; i++) {
 
            // Position of knight after move
            int x = p + X[i];
            int y = q + Y[i];
 
            // count valid moves
            if (x >= 0 && y >= 0 && x < n && y < m
                && mat[x][y] == 0)
                count++;
        }
 
        // Return number of possible moves
        return count;
    }
 
    // Driver program to check findPossibleMoves()
    public static void main(String[] args)
    {
        int mat[][] = { { 1, 0, 1, 0 },
                        { 0, 1, 1, 1 },
                        { 1, 1, 0, 1 },
                        { 0, 1, 1, 1 } };
 
        int p = 2, q = 2;
 
        System.out.println(findPossibleMoves(mat, p, q));
    }
}


Python3




# Python3 program to find number
# of possible moves of knight
n = 4;
m = 4;
 
# To calculate possible moves
def findPossibleMoves(mat, p, q):
    global n, m;
     
    # All possible moves of a knight
    X = [2, 1, -1, -2, -2, -1, 1, 2];
    Y = [1, 2, 2, 1, -1, -2, -2, -1];
 
    count = 0;
 
    # Check if each possible move
    # is valid or not
    for i in range(8):
         
        # Position of knight after move
        x = p + X[i];
        y = q + Y[i];
 
        # count valid moves
        if(x >= 0 and y >= 0 and x < n and
           y < m and mat[x][y] == 0):
            count += 1;
 
    # Return number of possible moves
    return count;
 
# Driver code
if __name__ == '__main__':
    mat = [[1, 0, 1, 0], [0, 1, 1, 1],
           [1, 1, 0, 1], [0, 1, 1, 1]];
 
    p, q = 2, 2;
 
    print(findPossibleMoves(mat, p, q));
 
# This code is contributed by 29AjayKumar


C#




// C# program to find number of
// possible moves of knight
using System;
 
class GFG
{
    static int n = 4;
    static int m = 4;
 
    // To calculate
    // possible moves
    static int findPossibleMoves(int [,]mat,
                                 int p, int q)
    {
        // All possible moves
        // of a knight
        int []X = { 2, 1, -1, -2,
                   -2, -1, 1, 2 };
        int []Y = { 1, 2, 2, 1,
                   -1, -2, -2, -1 };
 
        int count = 0;
 
        // Check if each possible
        // move is valid or not
        for (int i = 0; i < 8; i++)
        {
 
            // Position of knight
            // after move
            int x = p + X[i];
            int y = q + Y[i];
 
            // count valid moves
            if (x >= 0 && y >= 0 &&
                x < n && y < m &&
                mat[x, y] == 0)
                count++;
        }
 
        // Return number
        // of possible moves
        return count;
    }
 
    // Driver Code
    static public void Main ()
    {
        int [,]mat = { { 1, 0, 1, 0 },
                       { 0, 1, 1, 1 },
                       { 1, 1, 0, 1 },
                       { 0, 1, 1, 1 }};
 
        int p = 2, q = 2;
 
        Console.WriteLine(findPossibleMoves(mat,
                                            p, q));
    }
}
 
// This code is contributed by m_kit


PHP




<?php
// PHP program to find number
// of possible moves of knight
$n = 4;
$m = 4;
 
// To calculate possible moves
function findPossibleMoves($mat,
                           $p, $q)
{
    global $n;
    global $m;
     
    // All possible moves
    // of a knight
    $X = array(2, 1, -1, -2,
              -2, -1, 1, 2);
    $Y = array(1, 2, 2, 1,
              -1, -2, -2, -1);
 
    $count = 0;
 
    // Check if each possible
    // move is valid or not
    for ($i = 0; $i < 8; $i++)
    {
 
        // Position of
        // knight after move
        $x = $p + $X[$i];
        $y = $q + $Y[$i];
 
        // count valid moves
        if ($x >= 0 && $y >= 0 &&
            $x < $n && $y < $m &&
            $mat[$x][$y] == 0)
            $count++;
    }
 
    // Return number
    // of possible moves
    return $count;
}
 
// Driver Code
$mat = array(array(1, 0, 1, 0),
             array(0, 1, 1, 1),
             array(1, 1, 0, 1),
             array(0, 1, 1, 1));
 
$p = 2; $q = 2;
 
echo findPossibleMoves($mat,
                       $p, $q);
 
// This code is contributed by ajit
?>


Javascript




<script>
    // Javascript program to find number of possible moves of knight
     
    let n = 4;
    let m = 4;
     
    // To calculate possible moves
    function findPossibleMoves(mat, p, q)
    {
        // All possible moves of a knight
        let X = [ 2, 1, -1, -2, -2, -1, 1, 2 ];
        let Y = [ 1, 2, 2, 1, -1, -2, -2, -1 ];
   
        let count = 0;
   
        // Check if each possible move is valid or not
        for (let i = 0; i < 8; i++) {
   
            // Position of knight after move
            let x = p + X[i];
            let y = q + Y[i];
   
            // count valid moves
            if (x >= 0 && y >= 0 && x < n && y < m && mat[x][y] == 0)
                count++;
        }
   
        // Return number of possible moves
        return count;
    }
     
    let mat = [ [ 1, 0, 1, 0 ],
               [ 0, 1, 1, 1 ],
               [ 1, 1, 0, 1 ],
               [ 0, 1, 1, 1 ] ];
   
    let p = 2, q = 2;
 
    document.write(findPossibleMoves(mat, p, q));
     
</script>


Output

4

Time Complexity: O(1) 
Auxiliary Space: O(1)

 



Like Article
Suggest improvement
Previous
Next
Share your thoughts in the comments

Similar Reads