Open In App

Minimum Initial Points to Reach Destination

Last Updated : 23 Nov, 2023
Improve
Improve
Like Article
Like
Save
Share
Report

Given a M*N grid with each cell consisting of positive, negative, or no points i.e., zero points. From a cell (i, j) we can move to (i+1, j) or (i, j+1) and we can move to a cell only if we have positive points ( > 0 ) when we move to that cell. Whenever we pass through a cell, points in that cell are added to our overall points. We need to find minimum initial points to reach cell (m-1, n-1) from (0, 0).

Example:

Input: M = 3, N = 3, points[][] = {{-2,-3,3}, {-5,-10,1}, {10,30,-5}}
Output: 7
Explanation: 7 is the minimum value to reach the destination with positive throughout the path. Below is the path (0,0) -> (0,1) -> (0,2) -> (1, 2) -> (2, 2). We start from (0, 0) with 7, we reach (0, 1) with 5, (0, 2) with 2, (1, 2) with 5, (2, 2) with and finally we have 1 point (we needed greater than 0 points at the end).

Input: M = 3, N = 2, points[][] = {{2,3}, {5,10}, {10,30}}
Output: 1
Explanation: Take any path, all of them are positive. So, required one point at the start

We strongly recommend that you click here and practice it, before moving on to the solution.

Minimum Initial Points to Reach Destination using Dynamic Programming:

We can solve this problem through bottom-up table filling dynamic programming technique.

The idea is to use a 2D dp array where dp[i][j] represents the minimum initial points required to reach destination cell (m-1,n-1) starting from cell (i,j). From any cell (i,j) there two options to move (i+1,j) and (i,j+1), so to compute dp[i][j], we choose a cell that require less intial points to reach the end i.e., min(dp[i+1][j], dp[i][j+1]).

Follow the steps to solve the problem

  • Create a 2D dp array of the same size as the grid, where dp[i][j] represents the minimum initial points required to reach destination cell (m-1,n-1) starting from cell (i,j). dp[0][0] is our final answer.
  • Start filling the array from the bottom right corner to left top.
  • At any cell (i,j) there two options to move (i+1,j) and (i,j+1). We choose a cell that require less intial points to reach the end i.e., min_Points_on_exit = min(dp[i+1][j], dp[i][j+1]) min(dp[i+1][j], dp[i][j+1]). From min_Points_on_exit we can compute dp[i][j] by:-

dp[i][j] = max(min_Points_on_exit – points[i][j], 1)

How the above expression covers all the cases?

  1. If points[i][j] == 0, then nothing is gained in this cell;we leave the cell with the same points as we enter the cell with, i.e. dp[i][j] = min_Points_on_exit.
  2. If points[i][j] < 0, then the we must have points greater than min_Points_on_exit before entering (i, j) in order to compensate for the points lost in this cell. The minimum amount of compensation is ” – points[i][j] “, so we have dp[i][j] = min_Points_on_exit – points[i][j].
  3. If points[i][j] > 0, then we could enter (i, j) with points as little as min_Points_on_exit – points[i][j]. since we could gain “points[i][j]” points in this cell. However, the value of min_Points_on_exit – points[i][j] might drop to 0 or below in this situation. When this happens, we must increase the value to 1 in order to make sure dp[i][j] stays positive: dp[i][j] = max(min_Points_on_exit – points[i][j], 1).

Below is the implementation of above algorithm.

C++14




// C++ program to find minimum initial points to reach
// destination
#include <bits/stdc++.h>
#define R 3
#define C 3
 
using namespace std;
 
int minInitialPoints(int points[][C])
{
    // dp[i][j] represents the minimum initial points player
    // should have so that when starts with cell(i, j)
    // successfully reaches the destination cell(m-1, n-1)
    int dp[R][C];
    int m = R, n = C;
 
    // Base case
    dp[m - 1][n - 1] = points[m - 1][n - 1] > 0
                           ? 1
                           : abs(points[m - 1][n - 1]) + 1;
 
    // Fill last row and last column as base to fill
    // entire table
    for (int i = m - 2; i >= 0; i--)
        dp[i][n - 1]
            = max(dp[i + 1][n - 1] - points[i][n - 1], 1);
    for (int j = n - 2; j >= 0; j--)
        dp[m - 1][j]
            = max(dp[m - 1][j + 1] - points[m - 1][j], 1);
 
    // fill the table in bottom-up fashion
    for (int i = m - 2; i >= 0; i--) {
        for (int j = n - 2; j >= 0; j--) {
            int min_points_on_exit
                = min(dp[i + 1][j], dp[i][j + 1]);
            dp[i][j]
                = max(min_points_on_exit - points[i][j], 1);
        }
    }
 
    return dp[0][0];
}
 
// Driver Program
int main()
{
 
    int points[R][C]
        = { { -2, -3, 3 }, { -5, -10, 1 }, { 10, 30, -5 } };
    cout << "Minimum Initial Points Required: "
         << minInitialPoints(points);
    return 0;
}


Java




import java.io.*;
import java.util.*;
 
class min_steps {
    static int minInitialPoints(int points[][], int R,
                                int C)
    {
        // dp[i][j] represents the minimum initial points
        // player should have so that when starts with
        // cell(i, j) successfully reaches the destination
        // cell(m-1, n-1)
        int dp[][] = new int[R][C];
        int m = R, n = C;
 
        // Base case
        dp[m - 1][n - 1]
            = points[m - 1][n - 1] > 0
                  ? 1
                  : Math.abs(points[m - 1][n - 1]) + 1;
 
        // Fill last row and last column as base to fill
        // entire table
        for (int i = m - 2; i >= 0; i--)
            dp[i][n - 1] = Math.max(
                dp[i + 1][n - 1] - points[i][n - 1], 1);
        for (int j = n - 2; j >= 0; j--)
            dp[m - 1][j] = Math.max(
                dp[m - 1][j + 1] - points[m - 1][j], 1);
 
        // fill the table in bottom-up fashion
        for (int i = m - 2; i >= 0; i--) {
            for (int j = n - 2; j >= 0; j--) {
                int min_points_on_exit
                    = Math.min(dp[i + 1][j], dp[i][j + 1]);
                dp[i][j] = Math.max(
                    min_points_on_exit - points[i][j], 1);
            }
        }
 
        return dp[0][0];
    }
 
    /* Driver program to test above function */
    public static void main(String args[])
    {
        int points[][] = { { -2, -3, 3 },
                           { -5, -10, 1 },
                           { 10, 30, -5 } };
        int R = 3, C = 3;
        System.out.println(
            "Minimum Initial Points Required: "
            + minInitialPoints(points, R, C));
    }
} /* This code is contributed by Rajat Mishra */


Python3




# Python3 program to find minimum initial
# points to reach destination
import math as mt
R = 3
C = 3
 
 
def minInitialPoints(points):
    '''
    dp[i][j] represents the minimum initial
    points player should have so that when
    starts with cell(i, j) successfully
    reaches the destination cell(m-1, n-1)
    '''
    dp = [[0 for x in range(C + 1)]
          for y in range(R + 1)]
    m, n = R, C
 
    if points[m - 1][n - 1] > 0:
        dp[m - 1][n - 1] = 1
    else:
        dp[m - 1][n - 1] = abs(points[m - 1][n - 1]) + 1
    '''
    Fill last row and last column as base
    to fill entire table
    '''
    for i in range(m - 2, -1, -1):
        dp[i][n - 1] = max(dp[i + 1][n - 1] -
                           points[i][n - 1], 1)
    for i in range(n - 2, -1, -1):
        dp[m - 1][i] = max(dp[m - 1][i + 1] -
                           points[m - 1][i], 1)
    '''
    fill the table in bottom-up fashion
    '''
    for i in range(m - 2, -1, -1):
        for j in range(n - 2, -1, -1):
            min_points_on_exit = min(dp[i + 1][j],
                                     dp[i][j + 1])
            dp[i][j] = max(min_points_on_exit -
                           points[i][j], 1)
 
    return dp[0][0]
 
 
# Driver code
points = [[-2, -3, 3],
          [-5, -10, 1],
          [10, 30, -5]]
 
print("Minimum Initial Points Required:",
      minInitialPoints(points))
 
 
# This code is contributed by
# Mohit kumar 29 (IIIT gwalior)


C#




// C# program Minimum Initial Points
// to Reach Destination
using System;
class GFG {
 
    static int minInitialPoints(int[, ] points, int R,
                                int C)
    {
 
        // dp[i][j] represents the
        // minimum initial points
        // player should have so
        // that when starts with
        // cell(i, j) successfully
        // reaches the destination
        // cell(m-1, n-1)
        int[, ] dp = new int[R, C];
        int m = R, n = C;
 
        // Base case
        dp[m - 1, n - 1]
            = points[m - 1, n - 1] > 0
                  ? 1
                  : Math.Abs(points[m - 1, n - 1]) + 1;
 
        // Fill last row and last
        // column as base to fill
        // entire table
        for (int i = m - 2; i >= 0; i--)
            dp[i, n - 1] = Math.Max(
                dp[i + 1, n - 1] - points[i, n - 1], 1);
        for (int j = n - 2; j >= 0; j--)
            dp[m - 1, j] = Math.Max(
                dp[m - 1, j + 1] - points[m - 1, j], 1);
 
        // fill the table in
        // bottom-up fashion
        for (int i = m - 2; i >= 0; i--) {
            for (int j = n - 2; j >= 0; j--) {
                int min_points_on_exit
                    = Math.Min(dp[i + 1, j], dp[i, j + 1]);
                dp[i, j] = Math.Max(
                    min_points_on_exit - points[i, j], 1);
            }
        }
 
        return dp[0, 0];
    }
 
    // Driver Code
    public static void Main()
    {
        int[, ] points = { { -2, -3, 3 },
                           { -5, -10, 1 },
                           { 10, 30, -5 } };
        int R = 3, C = 3;
        Console.Write("Minimum Initial Points Required: "
                      + minInitialPoints(points, R, C));
    }
}
 
// This code is contributed by nitin mittal.


Javascript




<script>
    // Javascript program to find minimum initial points to reach destination
 
    function minInitialPoints(points,R,C)
    {
        // dp[i][j] represents the minimum initial points player
        // should have so that when starts with cell(i, j) successfully
        // reaches the destination cell(m-1, n-1)
        var dp = new Array(R);
        var m = R, n = C;
         
        // Loop to create 2D array using 1D array
        for (var i = 0; i < dp.length; i++) {
            dp[i] = new Array(C);
        }
        
        // Base case
        dp[m-1][n-1] = points[m-1][n-1] > 0? 1: Math.abs(points[m-1][n-1]) + 1;
        
        // Fill last row and last column as base to fill
        // entire table
        for (var i = m-2; i >= 0; i--)
             dp[i][n-1] = Math.max(dp[i+1][n-1] - points[i][n-1], 1);
        for (var j = n-2; j >= 0; j--)
             dp[m-1][j] = Math.max(dp[m-1][j+1] - points[m-1][j], 1);
        
        // fill the table in bottom-up fashion
        for (var i=m-2; i>=0; i--)
        {
            for (var j=n-2; j>=0; j--)
            {
                var min_points_on_exit = Math.min(dp[i+1][j], dp[i][j+1]);
                dp[i][j] = Math.max(min_points_on_exit - points[i][j], 1);
            }
         }
        
         return dp[0][0];
    }
     
    var points = [ [-2,-3,3],
                  [-5,-10,1],
                  [10,30,-5]
                            ];
    var R = 3,C = 3;
    document.write("Minimum Initial Points Required: "+minInitialPoints(points,R,C) );
    //This code is contributed by shruti456rawal
</script>


PHP




<?php
// PHP program to find minimum initial
// points to reach destination
$R = 3;
$C = 3;
 
function minInitialPoints($points)
{
    // dp[i][j] represents the minimum
    // initial points player should have
    // so that when starts with cell(i, j)
    // successfully reaches the destination
    // cell(m-1, n-1)
    global $R;
    global $C;
    $dp[$R][$C] = array();
    $m = $R;
    $n = $C;
 
    // Base case
    $dp[$m - 1][$n - 1] = $points[$m - 1][$n - 1] > 0 ? 1 :
                    abs($points[$m - 1][$n - 1]) + 1;
 
    // Fill last row and last column as
    // base to fill entire table
    for ($i = $m - 2; $i >= 0; $i--)
        $dp[$i][$n - 1] = max($dp[$i + 1][$n - 1] -
                            $points[$i][$n - 1], 1);
    for ($j = $n - 2; $j >= 0; $j--)
        $dp[$m - 1][$j] = max($dp[$m - 1][$j + 1] -
                            $points[$m - 1][$j], 1);
 
    // fill the table in bottom-up fashion
    for ($i = $m - 2; $i >= 0; $i--)
    {
        for ($j = $n - 2; $j >= 0; $j--)
        {
            $min_points_on_exit = min($dp[$i + 1][$j],
                                    $dp[$i][$j + 1]);
            $dp[$i][$j] = max($min_points_on_exit -
                            $points[$i][$j], 1);
        }
    }
 
    return $dp[0][0];
}
 
// Driver Code
$points = array(array(-2, -3, 3),
                array(-5, -10, 1),
                array(10, 30, -5));
             
echo "Minimum Initial Points Required: ",
            minInitialPoints($points);
 
// This code is contributed by akt_mit
?>


Output

Minimum Initial Points Required: 7

Time Complexity: O(M*N)
Auxiliary Space: O(M*N)



Like Article
Suggest improvement
Previous
Next
Share your thoughts in the comments

Similar Reads