Open In App

Find a common element in all rows of a given row-wise sorted matrix

Last Updated : 24 Mar, 2023
Improve
Improve
Like Article
Like
Save
Share
Report

Given a matrix where every row is sorted in increasing order. Write a function that finds and returns a common element in all rows. If there is no common element, then returns -1. 
Example: 
 

Input: mat[4][5] = { {1, 2, 3, 4, 5},
                    {2, 4, 5, 8, 10},
                    {3, 5, 7, 9, 11},
                    {1, 3, 5, 7, 9},
                  };
Output: 5

A O(m*n*n) simple solution is to take every element of first row and search it in all other rows, till we find a common element. Time complexity of this solution is O(m*n*n) where m is number of rows and n is number of columns in given matrix. This can be improved to O(m*n*Logn) if we use Binary Search instead of linear search.
We can solve this problem in O(mn) time using the approach similar to merge of Merge Sort. The idea is to start from the last column of every row. If elements at all last columns are same, then we found the common element. Otherwise we find the minimum of all last columns. Once we find a minimum element, we know that all other elements in last columns cannot be a common element, so we reduce last column index for all rows except for the row which has minimum value. We keep repeating these steps till either all elements at current last column don’t become same, or a last column index reaches 0.
Below is the implementation of above idea.
 

C++




// A C++ program to find a common element in all rows of a
// row wise sorted array
#include <bits/stdc++.h>
using namespace std;
  
// Specify number of rows and columns
#define M 4
#define N 5
  
// Returns common element in all rows of mat[M][N]. If there is no
// common element, then -1 is returned
int findCommon(int mat[M][N])
{
    // An array to store indexes of current last column
    int column[M];
    int min_row; // To store index of row whose current
    // last element is minimum
  
    // Initialize current last element of all rows
    int i;
    for (i = 0; i < M; i++)
        column[i] = N - 1;
  
    min_row = 0; // Initialize min_row as first row
  
    // Keep finding min_row in current last column, till either
    // all elements of last column become same or we hit first column.
    while (column[min_row] >= 0) {
        // Find minimum in current last column
        for (i = 0; i < M; i++) {
            if (mat[i][column[i]] < mat[min_row][column[min_row]])
                min_row = i;
        }
  
        // eq_count is count of elements equal to minimum in current last
        // column.
        int eq_count = 0;
  
        // Traverse current last column elements again to update it
        for (i = 0; i < M; i++) {
            // Decrease last column index of a row whose value is more
            // than minimum.
            if (mat[i][column[i]] > mat[min_row][column[min_row]]) {
                if (column[i] == 0)
                    return -1;
  
                column[i] -= 1; // Reduce last column index by 1
            }
            else
                eq_count++;
        }
  
        // If equal count becomes M, return the value
        if (eq_count == M)
            return mat[min_row][column[min_row]];
    }
    return -1;
}
  
// Driver Code
int main()
{
    int mat[M][N] = {
        { 1, 2, 3, 4, 5 },
        { 2, 4, 5, 8, 10 },
        { 3, 5, 7, 9, 11 },
        { 1, 3, 5, 7, 9 },
    };
    int result = findCommon(mat);
    if (result == -1)
        cout << "No common element";
    else
        cout << "Common element is " << result;
    return 0;
}
  
// This code is contributed
// by Akanksha Rai


C




// A C program to find a common element in all rows of a
// row wise sorted array
#include <stdio.h>
  
// Specify number of rows and columns
#define M 4
#define N 5
  
// Returns common element in all rows of mat[M][N]. If there is no
// common element, then -1 is returned
int findCommon(int mat[M][N])
{
    // An array to store indexes of current last column
    int column[M];
    int min_row; // To store index of row whose current
    // last element is minimum
  
    // Initialize current last element of all rows
    int i;
    for (i = 0; i < M; i++)
        column[i] = N - 1;
  
    min_row = 0; // Initialize min_row as first row
  
    // Keep finding min_row in current last column, till either
    // all elements of last column become same or we hit first column.
    while (column[min_row] >= 0) {
        // Find minimum in current last column
        for (i = 0; i < M; i++) {
            if (mat[i][column[i]] < mat[min_row][column[min_row]])
                min_row = i;
        }
  
        // eq_count is count of elements equal to minimum in current last
        // column.
        int eq_count = 0;
  
        // Traverse current last column elements again to update it
        for (i = 0; i < M; i++) {
            // Decrease last column index of a row whose value is more
            // than minimum.
            if (mat[i][column[i]] > mat[min_row][column[min_row]]) {
                if (column[i] == 0)
                    return -1;
  
                column[i] -= 1; // Reduce last column index by 1
            }
            else
                eq_count++;
        }
  
        // If equal count becomes M, return the value
        if (eq_count == M)
            return mat[min_row][column[min_row]];
    }
    return -1;
}
  
// driver program to test above function
int main()
{
    int mat[M][N] = {
        { 1, 2, 3, 4, 5 },
        { 2, 4, 5, 8, 10 },
        { 3, 5, 7, 9, 11 },
        { 1, 3, 5, 7, 9 },
    };
    int result = findCommon(mat);
    if (result == -1)
        printf("No common element");
    else
        printf("Common element is %d", result);
    return 0;
}


Java




// A Java program to find a common
// element in all rows of a
// row wise sorted array
  
class GFG {
    // Specify number of rows and columns
    static final int M = 4;
    static final int N = 5;
  
    // Returns common element in all rows
    // of mat[M][N]. If there is no
    // common element, then -1 is
    // returned
    static int findCommon(int mat[][])
    {
        // An array to store indexes
        // of current last column
        int column[] = new int[M];
  
        // To store index of row whose current
        // last element is minimum
        int min_row;
  
        // Initialize current last element of all rows
        int i;
        for (i = 0; i < M; i++)
            column[i] = N - 1;
  
        // Initialize min_row as first row
        min_row = 0;
  
        // Keep finding min_row in current last column, till either
        // all elements of last column become same or we hit first column.
        while (column[min_row] >= 0) {
            // Find minimum in current last column
            for (i = 0; i < M; i++) {
                if (mat[i][column[i]] < mat[min_row][column[min_row]])
                    min_row = i;
            }
  
            // eq_count is count of elements equal to minimum in current last
            // column.
            int eq_count = 0;
  
            // Traverse current last column elements again to update it
            for (i = 0; i < M; i++) {
                // Decrease last column index of a row whose value is more
                // than minimum.
                if (mat[i][column[i]] > mat[min_row][column[min_row]]) {
                    if (column[i] == 0)
                        return -1;
  
                    // Reduce last column index by 1
                    column[i] -= 1;
                }
                else
                    eq_count++;
            }
  
            // If equal count becomes M,
            // return the value
            if (eq_count == M)
                return mat[min_row][column[min_row]];
        }
        return -1;
    }
  
    // Driver code
    public static void main(String[] args)
    {
        int mat[][] = { { 1, 2, 3, 4, 5 },
                        { 2, 4, 5, 8, 10 },
                        { 3, 5, 7, 9, 11 },
                        { 1, 3, 5, 7, 9 } };
        int result = findCommon(mat);
        if (result == -1)
            System.out.print("No common element");
        else
            System.out.print("Common element is " + result);
    }
}
  
// This code is contributed by Anant Agarwal.


Python 3




# Python 3 program to find a common element 
# in all rows of a row wise sorted array
  
# Specify number of rows 
# and columns
M = 4
N = 5
  
# Returns common element in all rows 
# of mat[M][N]. If there is no common 
# element, then -1 is returned
def findCommon(mat):
  
    # An array to store indexes of 
    # current last column
    column = [N - 1] * M
  
    min_row = 0 # Initialize min_row as first row
  
    # Keep finding min_row in current last 
    # column, till either all elements of 
    # last column become same or we hit first column.
    while (column[min_row] >= 0):
      
        # Find minimum in current last column
        for i in range(M):
            if (mat[i][column[i]] < 
                mat[min_row][column[min_row]]):
                min_row = i
      
        # eq_count is count of elements equal 
        # to minimum in current last column.
        eq_count = 0
  
        # Traverse current last column elements
        # again to update it
        for i in range(M):
              
            # Decrease last column index of a row 
            # whose value is more than minimum.
            if (mat[i][column[i]] > 
                mat[min_row][column[min_row]]):
                if (column[i] == 0):
                    return -1
  
                column[i] -= 1 # Reduce last column
                               # index by 1
          
            else:
                eq_count += 1
  
        # If equal count becomes M, return the value
        if (eq_count == M):
            return mat[min_row][column[min_row]]
    return -1
  
# Driver Code
if __name__ == "__main__":
      
    mat = [[1, 2, 3, 4, 5],
           [2, 4, 5, 8, 10],
           [3, 5, 7, 9, 11],
           [1, 3, 5, 7, 9]]
  
    result = findCommon(mat)
    if (result == -1):
        print("No common element")
    else:
        print("Common element is", result)
  
# This code is contributed by ita_c


C#




// A C# program to find a common
// element in all rows of a
// row wise sorted array
using System;
  
class GFG {
  
    // Specify number of rows and columns
    static int M = 4;
    static int N = 5;
  
    // Returns common element in all rows
    // of mat[M][N]. If there is no
    // common element, then -1 is
    // returned
    static int findCommon(int[, ] mat)
    {
  
        // An array to store indexes
        // of current last column
        int[] column = new int[M];
  
        // To store index of row whose
        // current last element is minimum
        int min_row;
  
        // Initialize current last element
        // of all rows
        int i;
        for (i = 0; i < M; i++)
            column[i] = N - 1;
  
        // Initialize min_row as first row
        min_row = 0;
  
        // Keep finding min_row in current
        // last column, till either all
        // elements of last column become
        // same or we hit first column.
        while (column[min_row] >= 0) {
  
            // Find minimum in current
            // last column
            for (i = 0; i < M; i++) {
                if (mat[i, column[i]] < mat[min_row, column[min_row]])
                    min_row = i;
            }
  
            // eq_count is count of elements
            // equal to minimum in current
            // last column.
            int eq_count = 0;
  
            // Traverse current last column
            // elements again to update it
            for (i = 0; i < M; i++) {
  
                // Decrease last column index
                // of a row whose value is more
                // than minimum.
                if (mat[i, column[i]] > mat[min_row, column[min_row]]) {
                    if (column[i] == 0)
                        return -1;
  
                    // Reduce last column index
                    // by 1
                    column[i] -= 1;
                }
                else
                    eq_count++;
            }
  
            // If equal count becomes M,
            // return the value
            if (eq_count == M)
                return mat[min_row,
                           column[min_row]];
        }
  
        return -1;
    }
  
    // Driver code
    public static void Main()
    {
        int[, ] mat = { { 1, 2, 3, 4, 5 },
                        { 2, 4, 5, 8, 10 },
                        { 3, 5, 7, 9, 11 },
                        { 1, 3, 5, 7, 9 } };
  
        int result = findCommon(mat);
  
        if (result == -1)
            Console.Write("No common element");
        else
            Console.Write("Common element is "
                          + result);
    }
}
  
// This code is contributed by Sam007.


Javascript




<script>
  
// A Javascript program to find a common
// element in all rows of a
// row wise sorted array    
      
    // Specify number of rows and columns
    let M = 4;
    let N = 5;
      
    // Returns common element in all rows
    // of mat[M][N]. If there is no
    // common element, then -1 is
    // returned
    function findCommon(mat)
    {
        // An array to store indexes
        // of current last column
        let column=new Array(M);
          
        // To store index of row whose current
        // last element is minimum
        let min_row;
        // Initialize current last element of all rows
        let i;
        for (i = 0; i < M; i++)
            column[i] = N - 1;
          
        // Initialize min_row as first row
        min_row = 0;
    
        // Keep finding min_row in current 
        // last column, till either
        // all elements of last column become 
        // same or we hit first column.
        while (column[min_row] >= 0) {
            // Find minimum in current last column
            for (i = 0; i < M; i++) {
                if (mat[i][column[i]] < mat[min_row][column[min_row]])
                    min_row = i;
            }
    
            // eq_count is count of elements equal to
            // minimum in current last
            // column.
            let eq_count = 0;
    
            // Traverse current last column 
            // elements again to update it
            for (i = 0; i < M; i++) {
                // Decrease last column index of a row whose value is more
                // than minimum.
                if (mat[i][column[i]] > mat[min_row][column[min_row]]) {
                    if (column[i] == 0)
                        return -1;
    
                    // Reduce last column index by 1
                    column[i] -= 1;
                }
                else
                    eq_count++;
            }
    
            // If equal count becomes M,
            // return the value
            if (eq_count == M)
                return mat[min_row][column[min_row]];
        }
        return -1;
    }
      
    // Driver Code
    let mat = [[1, 2, 3, 4, 5],
           [2, 4, 5, 8, 10],
           [3, 5, 7, 9, 11],
           [1, 3, 5, 7, 9]];
    let result = findCommon(mat)
    if (result == -1)
    {
        document.write("No common element");
          
    }
    else
    {
        document.write("Common element is ", result);
    }
      
    // This code is contributed by rag2127
      
</script>


Output: 

Common element is 5

 

Time complexity: O(M x N).
Auxiliary Space: O(M)

Explanation for working of above code 
Let us understand working of above code for following example.
Initially entries in last column array are N-1, i.e., {4, 4, 4, 4} 
    {1, 2, 3, 4, 5}, 
    {2, 4, 5, 8, 10}, 
    {3, 5, 7, 9, 11}, 
    {1, 3, 5, 7, 9},
The value of min_row is 0, so values of last column index for rows with value greater than 5 is reduced by one. So column[] becomes {4, 3, 3, 3}. 
    {1, 2, 3, 4, 5}, 
    {2, 4, 5, 8, 10}, 
    {3, 5, 7, 9, 11}, 
    {1, 3, 5, 7, 9},
The value of min_row remains 0  and value of last column index for rows with value greater than 5 is reduced by one. So column[] becomes {4, 2, 2, 2}. 
    {1, 2, 3, 4, 5}, 
    {2, 4, 5, 8, 10}, 
    {3, 5, 7, 9, 11}, 
    {1, 3, 5, 7, 9},
The value of min_row remains 0 and value of last column index for rows with value greater than 5 is reduced by one. So column[] becomes {4, 2, 1, 2}. 
    {1, 2, 3, 4, 5}, 
    {2, 4, 5, 8, 10}, 
    {3, 5, 7, 9, 11}, 
    {1, 3, 5, 7, 9},
Now all values in current last columns of all rows is same, so 5 is returned.
A Hashing Based Solution 
We can also use hashing. This solution works even if the rows are not sorted. It can be used to print all common elements.
 

Step1:  Create a Hash Table with all key as distinct elements 
        of row1. Value for all these will be 0.

Step2:  
For i = 1 to M-1
 For j = 0 to N-1
  If (mat[i][j] is already present in Hash Table)
   If (And this is not a repetition in current row.
      This can be checked by comparing HashTable value with
      row number)
         Update the value of this key in HashTable with current 
         row number

Step3: Iterate over HashTable and print all those keys for 
       which value = M 

 

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
  
// Specify number of rows and columns
#define M 4
#define N 5
  
// Returns common element in all rows of mat[M][N]. If there is no
// common element, then -1 is returned
int findCommon(int grid[M][N])
{
    // A hash map to store count of elements
    unordered_map<int, int> cnt;
  
    int i, j;
  
    for (i = 0; i < M; i++) {
  
        // Increment the count of first
        // element of the row
        cnt[grid[i][0]]++;
  
        // Starting from the second element
        // of the current row
        for (j = 1; j < N; j++) {
  
            // If current element is different from
            // the previous element i.e. it is appearing
            // for the first time in the current row
            if (grid[i][j] != grid[i][j - 1])
                cnt[grid[i][j]]++;
        }
    }
  
    // Find element having count equal to number of rows
    for (auto ele : cnt) {
        if (ele.second == M)
            return ele.first;
    }
  
    // No such element found
    return -1;
}
  
// Driver Code
int main()
{
    int mat[M][N] = {
        { 1, 2, 3, 4, 5 },
        { 2, 4, 5, 8, 10 },
        { 3, 5, 7, 9, 11 },
        { 1, 3, 5, 7, 9 },
    };
    int result = findCommon(mat);
    if (result == -1)
        cout << "No common element";
    else
        cout << "Common element is " << result;
  
    return 0;
}


Java




// Java implementation of the approach
import java.util.*;
  
class GFG 
{
  
// Specify number of rows and columns
static int M = 4;
static int N = 5;
  
// Returns common element in all rows of mat[M][N].
// If there is no common element, then -1 is returned
static int findCommon(int mat[][])
{
    // A hash map to store count of elements
    HashMap<Integer, 
            Integer> cnt = new HashMap<Integer, 
                                       Integer>();
  
    int i, j;
  
    for (i = 0; i < M; i++) 
    {
  
        // Increment the count of first
        // element of the row
        if(cnt.containsKey(mat[i][0]))
        {
            cnt.put(mat[i][0], 
            cnt.get(mat[i][0]) + 1);
        }
        else
        {
            cnt.put(mat[i][0], 1);
        }
  
        // Starting from the second element
        // of the current row
        for (j = 1; j < N; j++) 
        {
  
            // If current element is different from
            // the previous element i.e. it is appearing
            // for the first time in the current row
            if (mat[i][j] != mat[i][j - 1])
                if(cnt.containsKey(mat[i][j]))
                {
                    cnt.put(mat[i][j], 
                    cnt.get(mat[i][j]) + 1);
                }
                else
                {
                    cnt.put(mat[i][j], 1);
                }
        }
    }
  
    // Find element having count 
    // equal to number of rows
    for (Map.Entry<Integer, 
                   Integer> ele : cnt.entrySet())
    {
        if (ele.getValue() == M)
            return ele.getKey();
    }
  
    // No such element found
    return -1;
}
  
// Driver Code
public static void main(String[] args) 
{
    int mat[][] = {{ 1, 2, 3, 4, 5 },
                   { 2, 4, 5, 8, 10 },
                   { 3, 5, 7, 9, 11 },
                   { 1, 3, 5, 7, 9 }};
    int result = findCommon(mat);
    if (result == -1)
        System.out.println("No common element");
    else
        System.out.println("Common element is " + result);
    }
}
  
// This code is contributed by Rajput-Ji


Python




# Python3 implementation of the approach
from collections import defaultdict
  
# Specify number of rows and columns
M = 4
N = 5
  
# Returns common element in all rows of
# mat[M][N]. If there is no
# common element, then -1 is returned
def findCommon(grid):
    global M
    global N
  
    # A hash map to store count of elements
    cnt = dict()
    cnt = defaultdict(lambda: 0, cnt)
  
    i = 0
    j = 0
  
    while (i < M ): 
  
        # Increment the count of first
        # element of the row
        cnt[grid[i][0]] = cnt[grid[i][0]] + 1
  
        j = 1
          
        # Starting from the second element
        # of the current row
        while (j < N ) :
  
            # If current element is different from
            # the previous element i.e. it is appearing
            # for the first time in the current row
            if (grid[i][j] != grid[i][j - 1]):
                cnt[grid[i][j]] = cnt[grid[i][j]] + 1
            j = j + 1
        i = i + 1
          
    # Find element having count equal to number of rows
    for ele in cnt:
        if (cnt[ele] == M):
            return ele
      
    # No such element found
    return -1
  
# Driver Code
mat = [[1, 2, 3, 4, 5 ],
        [2, 4, 5, 8, 10],
        [3, 5, 7, 9, 11],
        [1, 3, 5, 7, 9 ],]
      
result = findCommon(mat)
if (result == -1):
    print("No common element")
else:
    print("Common element is ", result)
  
# This code is contributed by Arnab Kundu


C#




// C# implementation of the approach
using System;
using System.Collections.Generic; 
  
class GFG 
{
  
// Specify number of rows and columns
static int M = 4;
static int N = 5;
  
// Returns common element in all rows of mat[M,N].
// If there is no common element, then -1 is returned
static int findCommon(int [,]grid)
{
    // A hash map to store count of elements
    Dictionary<int,
               int> cnt = new Dictionary<int
                                         int>();
  
    int i, j;
  
    for (i = 0; i < M; i++) 
    {
  
        // Increment the count of first
        // element of the row
        if(cnt.ContainsKey(grid[i, 0]))
        {
            cnt[grid[i, 0]]= cnt[grid[i, 0]] + 1;
        }
        else
        {
            cnt.Add(grid[i, 0], 1);
        }
  
        // Starting from the second element
        // of the current row
        for (j = 1; j < N; j++) 
        {
  
            // If current element is different from
            // the previous element i.e. it is appearing
            // for the first time in the current row
            if (grid[i, j] != grid[i, j - 1])
                if(cnt.ContainsKey(mat[i, j]))
                {
                    cnt[grid[i, j]]= cnt[grid[i, j]] + 1;
                }
                else
                {
                    cnt.Add(grid[i, j], 1);
                }
        }
    }
  
    // Find element having count 
    // equal to number of rows
    foreach(KeyValuePair<int, int> ele in cnt)
    {
        if (ele.Value == M)
            return ele.Key;
    }
  
    // No such element found
    return -1;
}
  
// Driver Code
public static void Main(String[] args) 
{
    int [,]mat = {{ 1, 2, 3, 4, 5 },
                  { 2, 4, 5, 8, 10 },
                  { 3, 5, 7, 9, 11 },
                  { 1, 3, 5, 7, 9 }};
    int result = findCommon(mat);
    if (result == -1)
        Console.WriteLine("No common element");
    else
        Console.WriteLine("Common element is " + result);
    }
  
// This code is contributed by 29AjayKumar


Javascript




<script>
// Javascript implementation of the approach    
  
    // Specify number of rows and columns
    let M = 4;
    let N = 5;
      
    // Returns common element in all rows of mat[M][N].
    // If there is no common element, then -1 is returned
    function findCommon(mat)
    {
        // A hash map to store count of elements
        let cnt = new Map();
        let i, j;
        for (i = 0; i < M; i++)
        {
            // Increment the count of first
            // element of the row
            if(cnt.has(mat[i][0]))
            {
                cnt.set(mat[i][0],cnt.get(mat[i][0])+1);
            }
            else
            {
                cnt.set(mat[i][0],1);
            }
              
            // Starting from the second element
            // of the current row
            for (j = 1; j < N; j++)
            {
                // If current element is different from
                // the previous element i.e. it is appearing
                // for the first time in the current row
                if (mat[i][j] != mat[i][j - 1])
                {
                    if(cnt.has(mat[i][j]))
                    {
                        cnt.set(mat[i][j], cnt.get(mat[i][j]) + 1);
                    }
                    else
                    {
                        cnt.set(mat[i][j], 1);
                    }
                }
            }
        }
          
        // Find element having count
        // equal to number of rows
        for( let [key, value] of cnt.entries())
        {
            if(value == M)
                return key;
        }
          
        // No such element found
        return -1;
    }
      
    // Driver Code
    let mat = [[1, 2, 3, 4, 5 ],
        [2, 4, 5, 8, 10],
        [3, 5, 7, 9, 11],
        [1, 3, 5, 7, 9 ],]
    let result = findCommon(mat);
    if (result == -1)
        document.write("No common element");
    else
        document.write("Common element is " + result);
      
    //  This code is contributed by avanitrachhadiya2155
</script>


Output: 

Common element is 5

 

Time complexity: O(n*m) under the assumption that search and insert in HashTable take O(1) time

Auxiliary Space: O(n) due to unordered_map.

 Thanks to Nishant for suggesting this solution in a comment below.
Exercise: Given n sorted arrays of size m each, find all common elements in all arrays in O(mn) time.

 



Like Article
Suggest improvement
Previous
Next
Share your thoughts in the comments

Similar Reads