Open In App

Two Dimensional Binary Indexed Tree or Fenwick Tree

Last Updated : 30 Nov, 2023
Improve
Improve
Like Article
Like
Save
Share
Report

Prerequisite – Fenwick Tree

We know that to answer range sum queries on a 1-D array efficiently, binary indexed tree (or Fenwick Tree) is the best choice (even better than segment tree due to less memory requirements and a little faster than segment tree).

Can we answer sub-matrix sum queries efficiently using Binary Indexed Tree ?

The answer is yes. This is possible using a 2D BIT which is nothing but an array of 1D BIT. 

Algorithm:

We consider the below example. Suppose we have to find the sum of all numbers inside the highlighted area:

fenwick tree

We assume the origin of the matrix at the bottom – O.Then a 2D BIT exploits the fact that-

Sum under the marked area = Sum(OB) - Sum(OD) - 
                            Sum(OA) + Sum(OC) 

In our program, we use the getSum(x, y) function which finds the sum of the matrix from (0, 0) to (x, y). 
Hence the below formula : 

Sum under the marked area = Sum(OB) - Sum(OD) - 
                            Sum(OA) + Sum(OC) 

The above formula gets reduced to,

Query(x1,y1,x2,y2) = getSum(x2, y2) - 
                     getSum(x2, y1-1) - 
                     getSum(x1-1, y2) + 
                     getSum(x1-1, y1-1) 

where, 
x1, y1 = x and y coordinates of C 
x2, y2 = x and y coordinates of B
The updateBIT(x, y, val) function updates all the elements under the region – (x, y) to (N, M) where, 
N = maximum X co-ordinate of the whole matrix. 
M = maximum Y co-ordinate of the whole matrix.
The rest procedure is quite similar to that of 1D Binary Indexed Tree.

Below is the C++ implementation of 2D indexed tree 

C++




/* C++ program to implement 2D Binary Indexed Tree
 
2D BIT is basically a BIT where each element is another BIT.
Updating by adding v on (x, y) means it's effect will be found
throughout the rectangle [(x, y), (max_x, max_y)],
and query for (x, y) gives you the result of the rectangle
[(0, 0), (x, y)], assuming the total rectangle is
[(0, 0), (max_x, max_y)]. So when you query and update on
this BIT,you have to be careful about how many times you are
subtracting a rectangle and adding it. Simple set union formula
works here.
 
So if you want to get the result of a specific rectangle
[(x1, y1), (x2, y2)], the following steps are necessary:
 
Query(x1,y1,x2,y2) = getSum(x2, y2)-getSum(x2, y1-1) -
                     getSum(x1-1, y2)+getSum(x1-1, y1-1)
 
Here 'Query(x1,y1,x2,y2)' means the sum of elements enclosed
in the rectangle with bottom-left corner's co-ordinates
(x1, y1) and top-right corner's co-ordinates - (x2, y2)
 
Constraints -> x1<=x2 and y1<=y2
 
    /\
 y  |
    |           --------(x2,y2)
    |          |       |
    |          |       |
    |          |       |
    |          ---------
    |       (x1,y1)
    |
    |___________________________
   (0, 0)                   x-->
 
In this program we have assumed a square matrix. The
program can be easily extended to a rectangular one. */
 
#include<bits/stdc++.h>
using namespace std;
 
#define N 4 // N-->max_x and max_y
 
// A structure to hold the queries
struct Query
{
    int x1, y1; // x and y co-ordinates of bottom left
    int x2, y2; // x and y co-ordinates of top right
};
 
// A function to update the 2D BIT
void updateBIT(int BIT[][N+1], int x, int y, int val)
{
    for (; x <= N; x += (x & -x))
    {
        // This loop update all the 1D BIT inside the
        // array of 1D BIT = BIT[x]
        for (int yy=y; yy <= N; yy += (yy & -yy))
            BIT[x][yy] += val;
    }
    return;
}
 
// A function to get sum from (0, 0) to (x, y)
int getSum(int BIT[][N+1], int x, int y)
{
    int sum = 0;
 
    for(; x > 0; x -= x&-x)
    {
        // This loop sum through all the 1D BIT
        // inside the array of 1D BIT = BIT[x]
        for(int yy=y; yy > 0; yy -= yy&-yy)
        {
            sum += BIT[x][yy];
        }
    }
    return sum;
}
 
// A function to create an auxiliary matrix
// from the given input matrix
void constructAux(int mat[][N], int aux[][N+1])
{
    // Initialise Auxiliary array to 0
    for (int i=0; i<=N; i++)
        for (int j=0; j<=N; j++)
            aux[i][j] = 0;
 
    // Construct the Auxiliary Matrix
    for (int j=1; j<=N; j++)
        for (int i=1; i<=N; i++)
            aux[i][j] = mat[N-j][i-1];
 
    return;
}
 
// A function to construct a 2D BIT
void construct2DBIT(int mat[][N], int BIT[][N+1])
{
    // Create an auxiliary matrix
    int aux[N+1][N+1];
    constructAux(mat, aux);
 
    // Initialise the BIT to 0
    for (int i=1; i<=N; i++)
        for (int j=1; j<=N; j++)
            BIT[i][j] = 0;
 
    for (int j=1; j<=N; j++)
    {
        for (int i=1; i<=N; i++)
        {
            // Creating a 2D-BIT using update function
            // everytime we/ encounter a value in the
            // input 2D-array
            int v1 = getSum(BIT, i, j);
            int v2 = getSum(BIT, i, j-1);
            int v3 = getSum(BIT, i-1, j-1);
            int v4 = getSum(BIT, i-1, j);
 
            // Assigning a value to a particular element
            // of 2D BIT
            updateBIT(BIT, i, j, aux[i][j]-(v1-v2-v4+v3));
        }
    }
 
    return;
}
 
// A function to answer the queries
void answerQueries(Query q[], int m, int BIT[][N+1])
{
    for (int i=0; i<m; i++)
    {
        int x1 = q[i].x1 + 1;
        int y1 = q[i].y1 + 1;
        int x2 = q[i].x2 + 1;
        int y2 = q[i].y2 + 1;
 
        int ans = getSum(BIT, x2, y2)-getSum(BIT, x2, y1-1)-
                  getSum(BIT, x1-1, y2)+getSum(BIT, x1-1, y1-1);
 
        printf ("Query(%d, %d, %d, %d) = %d\n",
                q[i].x1, q[i].y1, q[i].x2, q[i].y2, ans);
    }
    return;
}
 
// Driver program
int main()
{
    int mat[N][N] = {{1, 2, 3, 4},
                    {5, 3, 8, 1},
                    {4, 6, 7, 5},
                    {2, 4, 8, 9}};
 
    // Create a 2D Binary Indexed Tree
    int BIT[N+1][N+1];
    construct2DBIT(mat, BIT);
 
    /* Queries of the form - x1, y1, x2, y2
       For example the query- {1, 1, 3, 2} means the sub-matrix-
    y
    /\
 3  |       1 2 3 4      Sub-matrix
 2  |       5 3 8 1      {1,1,3,2}      --->     3 8 1
 1  |       4 6 7 5                                 6 7 5
 0  |       2 4 8 9
    |
  --|------ 0 1 2 3 ----> x
    |
 
    Hence sum of the sub-matrix = 3+8+1+6+7+5 = 30
 
    */
 
    Query q[] = {{1, 1, 3, 2}, {2, 3, 3, 3}, {1, 1, 1, 1}};
    int m = sizeof(q)/sizeof(q[0]);
 
    answerQueries(q, m, BIT);
 
    return(0);
}


Java




/* Java program to implement 2D Binary Indexed Tree
 
2D BIT is basically a BIT where each element is another BIT.
Updating by adding v on (x, y) means it's effect will be found
throughout the rectangle [(x, y), (max_x, max_y)],
and query for (x, y) gives you the result of the rectangle
[(0, 0), (x, y)], assuming the total rectangle is
[(0, 0), (max_x, max_y)]. So when you query and update on
this BIT,you have to be careful about how many times you are
subtracting a rectangle and adding it. Simple set union formula
works here.
 
So if you want to get the result of a specific rectangle
[(x1, y1), (x2, y2)], the following steps are necessary:
 
Query(x1,y1,x2,y2) = getSum(x2, y2)-getSum(x2, y1-1) -
                    getSum(x1-1, y2)+getSum(x1-1, y1-1)
 
Here 'Query(x1,y1,x2,y2)' means the sum of elements enclosed
in the rectangle with bottom-left corner's co-ordinates
(x1, y1) and top-right corner's co-ordinates - (x2, y2)
 
Constraints -> x1<=x2 and y1<=y2
 
    /\
y |
    |     --------(x2,y2)
    |     | |
    |     | |
    |     | |
    |     ---------
    | (x1,y1)
    |
    |___________________________
(0, 0)             x-->
 
In this program we have assumed a square matrix. The
program can be easily extended to a rectangular one. */
class GFG
{
static final int N = 4; // N-.max_x and max_y
 
// A structure to hold the queries
static class Query
{
    int x1, y1; // x and y co-ordinates of bottom left
    int x2, y2; // x and y co-ordinates of top right
 
        public Query(int x1, int y1, int x2, int y2)
        {
            this.x1 = x1;
            this.y1 = y1;
            this.x2 = x2;
            this.y2 = y2;
        }
         
};
 
// A function to update the 2D BIT
static void updateBIT(int BIT[][], int x,
                      int y, int val)
{
    for (; x <= N; x += (x & -x))
    {
        // This loop update all the 1D BIT inside the
        // array of 1D BIT = BIT[x]
        for (; y <= N; y += (y & -y))
            BIT[x][y] += val;
    }
    return;
}
 
// A function to get sum from (0, 0) to (x, y)
static int getSum(int BIT[][], int x, int y)
{
    int sum = 0;
 
    for(; x > 0; x -= x&-x)
    {
        // This loop sum through all the 1D BIT
        // inside the array of 1D BIT = BIT[x]
        for(; y > 0; y -= y&-y)
        {
            sum += BIT[x][y];
        }
    }
    return sum;
}
 
// A function to create an auxiliary matrix
// from the given input matrix
static void constructAux(int mat[][], int aux[][])
{
    // Initialise Auxiliary array to 0
    for (int i = 0; i <= N; i++)
        for (int j = 0; j <= N; j++)
            aux[i][j] = 0;
 
    // Construct the Auxiliary Matrix
    for (int j = 1; j <= N; j++)
        for (int i = 1; i <= N; i++)
            aux[i][j] = mat[N - j][i - 1];
 
    return;
}
 
// A function to construct a 2D BIT
static void construct2DBIT(int mat[][],
                           int BIT[][])
{
    // Create an auxiliary matrix
    int [][]aux = new int[N + 1][N + 1];
    constructAux(mat, aux);
 
    // Initialise the BIT to 0
    for (int i = 1; i <= N; i++)
        for (int j = 1; j <= N; j++)
            BIT[i][j] = 0;
 
    for (int j = 1; j <= N; j++)
    {
        for (int i = 1; i <= N; i++)
        {
            // Creating a 2D-BIT using update function
            // everytime we/ encounter a value in the
            // input 2D-array
            int v1 = getSum(BIT, i, j);
            int v2 = getSum(BIT, i, j - 1);
            int v3 = getSum(BIT, i - 1, j - 1);
            int v4 = getSum(BIT, i - 1, j);
 
            // Assigning a value to a particular element
            // of 2D BIT
            updateBIT(BIT, i, j, aux[i][j] -
                     (v1 - v2 - v4 + v3));
        }
    }
    return;
}
 
// A function to answer the queries
static void answerQueries(Query q[], int m, int BIT[][])
{
    for (int i = 0; i < m; i++)
    {
        int x1 = q[i].x1 + 1;
        int y1 = q[i].y1 + 1;
        int x2 = q[i].x2 + 1;
        int y2 = q[i].y2 + 1;
 
        int ans = getSum(BIT, x2, y2) -
                  getSum(BIT, x2, y1 - 1) -
                  getSum(BIT, x1 - 1, y2) +
                  getSum(BIT, x1 - 1, y1 - 1);
 
        System.out.printf("Query(%d, %d, %d, %d) = %d\n",
                q[i].x1, q[i].y1, q[i].x2, q[i].y2, ans);
    }
    return;
}
 
// Driver Code
public static void main(String[] args)
{
    int mat[][] = { {1, 2, 3, 4},
                    {5, 3, 8, 1},
                    {4, 6, 7, 5},
                    {2, 4, 8, 9} };
 
    // Create a 2D Binary Indexed Tree
    int [][]BIT = new int[N + 1][N + 1];
    construct2DBIT(mat, BIT);
 
    /* Queries of the form - x1, y1, x2, y2
    For example the query- {1, 1, 3, 2} means the sub-matrix-
        y
        /\
    3 | 1 2 3 4     Sub-matrix
    2 | 5 3 8 1     {1,1,3,2} --.     3 8 1
    1 | 4 6 7 5                                 6 7 5
    0 | 2 4 8 9
        |
    --|------ 0 1 2 3 ---. x
        |
     
        Hence sum of the sub-matrix = 3+8+1+6+7+5 = 30
    */
    Query q[] = {new Query(1, 1, 3, 2),
                 new Query(2, 3, 3, 3),
                 new Query(1, 1, 1, 1)};
    int m = q.length;
 
    answerQueries(q, m, BIT);
}
}
 
// This code is contributed by 29AjayKumar


Python3




'''Python3  program to implement 2D Binary Indexed Tree
   
2D BIT is basically a BIT where each element is another BIT.
Updating by adding v on (x, y) means it's effect will be found
throughout the rectangle [(x, y), (max_x, max_y)],
and query for (x, y) gives you the result of the rectangle
[(0, 0), (x, y)], assuming the total rectangle is
[(0, 0), (max_x, max_y)]. So when you query and update on
this BIT,you have to be careful about how many times you are
subtracting a rectangle and adding it. Simple set union formula
works here.
   
So if you want to get the result of a specific rectangle
[(x1, y1), (x2, y2)], the following steps are necessary:
   
Query(x1,y1,x2,y2) = getSum(x2, y2)-getSum(x2, y1-1) -
                    getSum(x1-1, y2)+getSum(x1-1, y1-1)
   
Here 'Query(x1,y1,x2,y2)' means the sum of elements enclosed
in the rectangle with bottom-left corner's co-ordinates
(x1, y1) and top-right corner's co-ordinates - (x2, y2)
   
Constraints -> x1<=x2 and y1<=y2
   
    /\
y |
    |     --------(x2,y2)
    |     | |
    |     | |
    |     | |
    |     ---------
    | (x1,y1)
    |
    |___________________________
(0, 0)             x-->
   
In this program we have assumed a square matrix. The
program can be easily extended to a rectangular one. '''
 
N = 4 # N-.max_x and max_y
 
# A structure to hold the queries
class Query:
 
    def __init__(self, x1,y1,x2,y2):
     
        self.x1 = x1;
        self.y1 = y1;
        self.x2 = x2;
        self.y2 = y2;
 
 
# A function to update the 2D BIT
def updateBIT(BIT,x,y,val):
     
    while x <= N:
     
        # This loop update all the 1D BIT inside the
        # array of 1D BIT = BIT[x]
        while y <= N:
            BIT[x][y] += val;
            y += (y & -y)
         
        x += (x & -x)
     
    return;
 
 
# A function to get sum from (0, 0) to (x, y)
def getSum(BIT,x,y):
 
    sum = 0;
     
    while x > 0:
        # This loop sum through all the 1D BIT
        # inside the array of 1D BIT = BIT[x]
        while y > 0:
 
            sum += BIT[x][y];
            y -= y&-y
         
        x -= x&-x
     
    return sum;
 
 
# A function to create an auxiliary matrix
# from the given input matrix
def constructAux(mat,aux):
    # Initialise Auxiliary array to 0
    for  i in range(N + 1):
        for j in range(N + 1):
            aux[i][j] = 0
   
    # Construct the Auxiliary Matrix
    for j in range(1, N + 1):
        for i in range(1, N + 1):
            aux[i][j] = mat[N - j][i - 1];
   
    return
 
 
# A function to construct a 2D BIT
def construct2DBIT(mat,BIT):
    # Create an auxiliary matrix
    aux = [None for i in range(N + 1)]
    for i in range(N + 1) :
     
        aux[i]= [None for i in range(N + 1)]
     
    constructAux(mat, aux)
   
    # Initialise the BIT to 0
    for i in range(1, N + 1):
        for j in range(1, N + 1):
            BIT[i][j] = 0;
   
    for j in range(1, N + 1):
     
        for i in range(1, N + 1):
         
            # Creating a 2D-BIT using update function
            # everytime we/ encounter a value in the
            # input 2D-array
            v1 = getSum(BIT, i, j);
            v2 = getSum(BIT, i, j - 1);
            v3 = getSum(BIT, i - 1, j - 1);
            v4 = getSum(BIT, i - 1, j);
   
            # Assigning a value to a particular element
            # of 2D BIT
            updateBIT(BIT, i, j, aux[i][j] -
                     (v1 - v2 - v4 + v3));
         
     
    return;
 
 
# A function to answer the queries
def answerQueries(q,m,BIT):
     
    for i in range(m):
      
        x1 = q[i].x1 + 1;
        y1 = q[i].y1 + 1;
        x2 = q[i].x2 + 1;
        y2 = q[i].y2 + 1;
   
        ans = getSum(BIT, x2, y2) - \
                  getSum(BIT, x2, y1 - 1) - \
                  getSum(BIT, x1 - 1, y2) + \
                  getSum(BIT, x1 - 1, y1 - 1);
   
        print("Query (", q[i].x1, ", ", q[i].y1, ", ", q[i].x2, ", " , q[i].y2, ") = " ,ans, sep = "")
     
    return;
 
 
# Driver Code
mat= [[1, 2, 3, 4],
                    [5, 3, 8, 1],
                    [4, 6, 7, 5],
                    [2, 4, 8, 9]];
   
# Create a 2D Binary Indexed Tree
BIT = [None for i in range(N + 1)]
for i in range(N + 1):
 
    BIT[i]= [None for i in range(N + 1)]
    for j in range(N + 1):
            BIT[i][j]=0
         
     
construct2DBIT(mat, BIT);
   
''' Queries of the form - x1, y1, x2, y2
    For example the query- {1, 1, 3, 2} means the sub-matrix-
        y
        /\
    3 | 1 2 3 4     Sub-matrix
    2 | 5 3 8 1     {1,1,3,2} --.     3 8 1
    1 | 4 6 7 5                                 6 7 5
    0 | 2 4 8 9
        |
    --|------ 0 1 2 3 ---. x
        |
       
        Hence sum of the sub-matrix = 3+8+1+6+7+5 = 30
     
    '''
q = [Query(1, 1, 3, 2), Query(2, 3, 3, 3), Query(1, 1, 1, 1)];
m = len(q)
   
answerQueries(q, m, BIT);
 
# This code is contributed by phasing17


C#




/* C# program to implement 2D Binary Indexed Tree
 
2D BIT is basically a BIT where each element is another BIT.
Updating by.Adding v on (x, y) means it's effect will be found
throughout the rectangle [(x, y), (max_x, max_y)],
and query for (x, y) gives you the result of the rectangle
[(0, 0), (x, y)], assuming the total rectangle is
[(0, 0), (max_x, max_y)]. So when you query and update on
this BIT,you have to be careful about how many times you are
subtracting a rectangle and.Adding it. Simple set union formula
works here.
 
So if you want to get the result of a specific rectangle
[(x1, y1), (x2, y2)], the following steps are necessary:
 
Query(x1,y1,x2,y2) = getSum(x2, y2)-getSum(x2, y1-1) -
                    getSum(x1-1, y2)+getSum(x1-1, y1-1)
 
Here 'Query(x1,y1,x2,y2)' means the sum of elements enclosed
in the rectangle with bottom-left corner's co-ordinates
(x1, y1) and top-right corner's co-ordinates - (x2, y2)
 
Constraints -> x1<=x2 and y1<=y2
 
    /\
y |
    |     --------(x2,y2)
    |     | |
    |     | |
    |     | |
    |     ---------
    | (x1,y1)
    |
    |___________________________
(0, 0)             x-->
 
In this program we have assumed a square matrix. The
program can be easily extended to a rectangular one. */
using System;
 
class GFG
{
static readonly int N = 4; // N-.max_x and max_y
 
// A structure to hold the queries
public class Query
{
    public int x1, y1; // x and y co-ordinates of bottom left
    public int x2, y2; // x and y co-ordinates of top right
 
        public Query(int x1, int y1, int x2, int y2)
        {
            this.x1 = x1;
            this.y1 = y1;
            this.x2 = x2;
            this.y2 = y2;
        }
         
};
 
// A function to update the 2D BIT
static void updateBIT(int [,]BIT, int x,
                    int y, int val)
{
    for (; x <= N; x += (x & -x))
    {
        // This loop update all the 1D BIT inside the
        // array of 1D BIT = BIT[x]
        for (; y <= N; y += (y & -y))
            BIT[x,y] += val;
    }
    return;
}
 
// A function to get sum from (0, 0) to (x, y)
static int getSum(int [,]BIT, int x, int y)
{
    int sum = 0;
 
    for(; x > 0; x -= x&-x)
    {
        // This loop sum through all the 1D BIT
        // inside the array of 1D BIT = BIT[x]
        for(; y > 0; y -= y&-y)
        {
            sum += BIT[x, y];
        }
    }
    return sum;
}
 
// A function to create an auxiliary matrix
// from the given input matrix
static void constructAux(int [,]mat, int [,]aux)
{
    // Initialise Auxiliary array to 0
    for (int i = 0; i <= N; i++)
        for (int j = 0; j <= N; j++)
            aux[i, j] = 0;
 
    // Construct the Auxiliary Matrix
    for (int j = 1; j <= N; j++)
        for (int i = 1; i <= N; i++)
            aux[i, j] = mat[N - j, i - 1];
 
    return;
}
 
// A function to construct a 2D BIT
static void construct2DBIT(int [,]mat,
                        int [,]BIT)
{
    // Create an auxiliary matrix
    int [,]aux = new int[N + 1, N + 1];
    constructAux(mat, aux);
 
    // Initialise the BIT to 0
    for (int i = 1; i <= N; i++)
        for (int j = 1; j <= N; j++)
            BIT[i, j] = 0;
 
    for (int j = 1; j <= N; j++)
    {
        for (int i = 1; i <= N; i++)
        {
            // Creating a 2D-BIT using update function
            // everytime we/ encounter a value in the
            // input 2D-array
            int v1 = getSum(BIT, i, j);
            int v2 = getSum(BIT, i, j - 1);
            int v3 = getSum(BIT, i - 1, j - 1);
            int v4 = getSum(BIT, i - 1, j);
 
            // Assigning a value to a particular element
            // of 2D BIT
            updateBIT(BIT, i, j, aux[i,j] -
                    (v1 - v2 - v4 + v3));
        }
    }
    return;
}
 
// A function to answer the queries
static void answerQueries(Query []q, int m, int [,]BIT)
{
    for (int i = 0; i < m; i++)
    {
        int x1 = q[i].x1 + 1;
        int y1 = q[i].y1 + 1;
        int x2 = q[i].x2 + 1;
        int y2 = q[i].y2 + 1;
 
        int ans = getSum(BIT, x2, y2) -
                getSum(BIT, x2, y1 - 1) -
                getSum(BIT, x1 - 1, y2) +
                getSum(BIT, x1 - 1, y1 - 1);
 
        Console.Write("Query({0}, {1}, {2}, {3}) = {4}\n",
                q[i].x1, q[i].y1, q[i].x2, q[i].y2, ans);
    }
    return;
}
 
// Driver Code
public static void Main(String[] args)
{
    int [,]mat = { {1, 2, 3, 4},
                    {5, 3, 8, 1},
                    {4, 6, 7, 5},
                    {2, 4, 8, 9} };
 
    // Create a 2D Binary Indexed Tree
    int [,]BIT = new int[N + 1,N + 1];
    construct2DBIT(mat, BIT);
 
    /* Queries of the form - x1, y1, x2, y2
    For example the query- {1, 1, 3, 2} means the sub-matrix-
        y
        /\
    3 | 1 2 3 4     Sub-matrix
    2 | 5 3 8 1     {1,1,3,2} --.     3 8 1
    1 | 4 6 7 5                                 6 7 5
    0 | 2 4 8 9
        |
    --|------ 0 1 2 3 ---. x
        |
     
        Hence sum of the sub-matrix = 3+8+1+6+7+5 = 30
    */
    Query []q = {new Query(1, 1, 3, 2),
                new Query(2, 3, 3, 3),
                new Query(1, 1, 1, 1)};
    int m = q.Length;
 
    answerQueries(q, m, BIT);
}
}
 
// This code is contributed by Rajput-Ji


Javascript




<script>
/* Javascript program to implement 2D Binary Indexed Tree
   
2D BIT is basically a BIT where each element is another BIT.
Updating by adding v on (x, y) means it's effect will be found
throughout the rectangle [(x, y), (max_x, max_y)],
and query for (x, y) gives you the result of the rectangle
[(0, 0), (x, y)], assuming the total rectangle is
[(0, 0), (max_x, max_y)]. So when you query and update on
this BIT,you have to be careful about how many times you are
subtracting a rectangle and adding it. Simple set union formula
works here.
   
So if you want to get the result of a specific rectangle
[(x1, y1), (x2, y2)], the following steps are necessary:
   
Query(x1,y1,x2,y2) = getSum(x2, y2)-getSum(x2, y1-1) -
                    getSum(x1-1, y2)+getSum(x1-1, y1-1)
   
Here 'Query(x1,y1,x2,y2)' means the sum of elements enclosed
in the rectangle with bottom-left corner's co-ordinates
(x1, y1) and top-right corner's co-ordinates - (x2, y2)
   
Constraints -> x1<=x2 and y1<=y2
   
    /\
y |
    |     --------(x2,y2)
    |     | |
    |     | |
    |     | |
    |     ---------
    | (x1,y1)
    |
    |___________________________
(0, 0)             x-->
   
In this program we have assumed a square matrix. The
program can be easily extended to a rectangular one. */
 
let N = 4; // N-.max_x and max_y
 
// A structure to hold the queries
class Query
{
    constructor(x1,y1,x2,y2)
    {
        this.x1 = x1;
            this.y1 = y1;
            this.x2 = x2;
            this.y2 = y2;
    }
}
 
// A function to update the 2D BIT
function updateBIT(BIT,x,y,val)
{
    for (; x <= N; x += (x & -x))
    {
        // This loop update all the 1D BIT inside the
        // array of 1D BIT = BIT[x]
        for (; y <= N; y += (y & -y))
            BIT[x][y] += val;
    }
    return;
}
 
// A function to get sum from (0, 0) to (x, y)
function getSum(BIT,x,y)
{
    let sum = 0;
   
    for(; x > 0; x -= x&-x)
    {
        // This loop sum through all the 1D BIT
        // inside the array of 1D BIT = BIT[x]
        for(; y > 0; y -= y&-y)
        {
            sum += BIT[x][y];
        }
    }
    return sum;
}
 
// A function to create an auxiliary matrix
// from the given input matrix
function constructAux(mat,aux)
{
    // Initialise Auxiliary array to 0
    for (let i = 0; i <= N; i++)
        for (let j = 0; j <= N; j++)
            aux[i][j] = 0;
   
    // Construct the Auxiliary Matrix
    for (let j = 1; j <= N; j++)
        for (let i = 1; i <= N; i++)
            aux[i][j] = mat[N - j][i - 1];
   
    return;
}
 
// A function to construct a 2D BIT
function construct2DBIT(mat,BIT)
{
    // Create an auxiliary matrix
    let aux = new Array(N + 1);
    for(let i=0;i<(N+1);i++)
    {
        aux[i]=new Array(N+1);
    }
    constructAux(mat, aux);
   
    // Initialise the BIT to 0
    for (let i = 1; i <= N; i++)
        for (let j = 1; j <= N; j++)
            BIT[i][j] = 0;
   
    for (let j = 1; j <= N; j++)
    {
        for (let i = 1; i <= N; i++)
        {
            // Creating a 2D-BIT using update function
            // everytime we/ encounter a value in the
            // input 2D-array
            let v1 = getSum(BIT, i, j);
            let v2 = getSum(BIT, i, j - 1);
            let v3 = getSum(BIT, i - 1, j - 1);
            let v4 = getSum(BIT, i - 1, j);
   
            // Assigning a value to a particular element
            // of 2D BIT
            updateBIT(BIT, i, j, aux[i][j] -
                     (v1 - v2 - v4 + v3));
        }
    }
    return;
}
 
// A function to answer the queries
function answerQueries(q,m,BIT)
{
    for (let i = 0; i < m; i++)
    {
        let x1 = q[i].x1 + 1;
        let y1 = q[i].y1 + 1;
        let x2 = q[i].x2 + 1;
           let y2 = q[i].y2 + 1;
   
        let ans = getSum(BIT, x2, y2) -
                  getSum(BIT, x2, y1 - 1) -
                  getSum(BIT, x1 - 1, y2) +
                  getSum(BIT, x1 - 1, y1 - 1);
   
        document.write("Query ("+q[i].x1+", " +q[i].y1+", " +q[i].x2+", " +q[i].y2+") = " +ans+"<br>");
    }
    return;
}
 
// Driver Code
let mat= [[1, 2, 3, 4],
                    [5, 3, 8, 1],
                    [4, 6, 7, 5],
                    [2, 4, 8, 9]];
   
    // Create a 2D Binary Indexed Tree
    let BIT = new Array(N + 1);
    for(let i=0;i<(N+1);i++)
    {
        BIT[i]=new Array(N+1);
        for(let j=0;j<(N+1);j++)
        {
            BIT[i][j]=0;
        }
    }
    construct2DBIT(mat, BIT);
   
    /* Queries of the form - x1, y1, x2, y2
    For example the query- {1, 1, 3, 2} means the sub-matrix-
        y
        /\
    3 | 1 2 3 4     Sub-matrix
    2 | 5 3 8 1     {1,1,3,2} --.     3 8 1
    1 | 4 6 7 5                                 6 7 5
    0 | 2 4 8 9
        |
    --|------ 0 1 2 3 ---. x
        |
       
        Hence sum of the sub-matrix = 3+8+1+6+7+5 = 30
    */
    let q = [new Query(1, 1, 3, 2),
                 new Query(2, 3, 3, 3),
                 new Query(1, 1, 1, 1)];
    let m = q.length;
   
    answerQueries(q, m, BIT);
 
 
// This code is contributed by rag2127
</script>


Output

Query(1, 1, 3, 2) = 30
Query(2, 3, 3, 3) = 7
Query(1, 1, 1, 1) = 6

Time Complexity: 

  • Both updateBIT(x, y, val) function and getSum(x, y) function takes O(log(N)*log(M)) time.
  • Building the 2D BIT takes O(NM log(N)*log(M)).
  • Since in each of the queries we are calling getSum(x, y) function so answering all the Q queries takes O(Q*log(N)*log(M)) time.
  • Hence the overall time complexity of the program is O((NM+Q)*log(N)*log(M)) where, 
    N = maximum X co-ordinate of the whole matrix. 
    M = maximum Y co-ordinate of the whole matrix. 
    Q = Number of queries.

Auxiliary Space: O(NM) to store the BIT and the auxiliary array



Like Article
Suggest improvement
Previous
Next
Share your thoughts in the comments

Similar Reads