Open In App

Fibonacci Heap in Python

Last Updated : 12 Apr, 2024
Improve
Improve
Like Article
Like
Save
Share
Report

A Fibonacci Heap is a data structure that supports the insert, minimum, extract_min, merge, decrease_key, and delete operations, all amortized efficiently. It is mainly used in the implementation of Dijkstra’s shortest path algorithm and Prim’s minimum spanning tree algorithm.

Fibonacci Heap Operations and Their Amortized Time Complexities:

  1. Insert: O(1)
  2. Minimum: O(1)
  3. Extract Minimum: O(logn) amortized
  4. Merge: O(1)
  5. Decrease Key: O(1) amortized
  6. Delete: O(logn) amortized

Code:

Python3
import math

class FibonacciHeapNode:
    def __init__(self, key):
        self.key = key
        self.degree = 0
        self.parent = None
        self.child = None
        self.mark = False
        self.left = self
        self.right = self

class FibonacciHeap:
    def __init__(self):
        self.min_node = None
        self.num_nodes = 0

    def is_empty(self):
        return self.min_node is None

    def insert(self, key):
        node = FibonacciHeapNode(key)
        if self.min_node is None:
            self.min_node = node
        else:
            node.left = self.min_node
            node.right = self.min_node.right
            self.min_node.right = node
            node.right.left = node
            if node.key < self.min_node.key:
                self.min_node = node
        self.num_nodes += 1
        return node

    def minimum(self):
        if self.min_node is None:
            return None
        return self.min_node.key

    def merge(self, other_heap):
        if self.min_node is None:
            self.min_node = other_heap.min_node
        elif other_heap.min_node is not None:
            self.min_node.right.left = other_heap.min_node.left
            other_heap.min_node.left.right = self.min_node.right
            self.min_node.right = other_heap.min_node
            other_heap.min_node.left = self.min_node
            if other_heap.min_node.key < self.min_node.key:
                self.min_node = other_heap.min_node
        self.num_nodes += other_heap.num_nodes

    def _remove_from_root_list(self, node):
        if node == node.right:
            self.min_node = None
        else:
            node.left.right = node.right
            node.right.left = node.left
            if node == self.min_node:
                self.min_node = node.right

    def _link(self, node1, node2):
        self._remove_from_root_list(node2)
        node2.left = node2.right = node2
        node2.parent = node1
        if node1.child is None:
            node1.child = node2
        else:
            node2.left = node1.child
            node2.right = node1.child.right
            node1.child.right = node2
            node2.right.left = node2
        node1.degree += 1
        node2.mark = False

    def _consolidate(self):
        max_degree = math.ceil(math.log(self.num_nodes, 2))
        degree_table = [None] * (max_degree + 1)
        current = self.min_node
        while True:
            degree = current.degree
            next_node = current.right
            while degree_table[degree] is not None:
                other = degree_table[degree]
                if current.key > other.key:
                    current, other = other, current
                self._link(current, other)
                degree_table[degree] = None
                degree += 1
            degree_table[degree] = current
            if next_node == self.min_node:
                break
            current = next_node

        self.min_node = None
        for node in degree_table:
            if node is not None:
                if self.min_node is None:
                    self.min_node = node
                else:
                    node.left.right = node.right
                    node.right.left = node.left
                    node.left = self.min_node
                    node.right = self.min_node.right
                    self.min_node.right = node
                    node.right.left = node
                    if node.key < self.min_node.key:
                        self.min_node = node

    def extract_min(self):
        min_node = self.min_node
        if min_node is not None:
            if min_node.child is not None:
                children = [child for child in self._iterate(min_node.child)]
                for child in children:
                    child.parent = None
                    self.min_node.left.right = child
                    child.left = self.min_node.left
                    child.right = self.min_node
                    self.min_node.left = child
                    if child.key < self.min_node.key:
                        self.min_node = child
            self._remove_from_root_list(min_node)
            if min_node == min_node.right:
                self.min_node = None
            else:
                self.min_node = min_node.right
                self._consolidate()
            self.num_nodes -= 1
        return min_node

    def _cut(self, node, parent):
        if node == node.right:
            parent.child = None
        else:
            node.left.right = node.right
            node.right.left = node.left
            if node == parent.child:
                parent.child = node.right
        parent.degree -= 1
        self.min_node.left.right = node
        node.left = self.min_node.left
        node.right = self.min_node
        self.min_node.left = node
        node.parent = None
        node.mark = False

    def _cascade_cut(self, node):
        parent = node.parent
        if parent is not None:
            if not node.mark:
                node.mark = True
            else:
                self._cut(node, parent)
                self._cascade_cut(parent)

    def decrease_key(self, node, new_key):
        if new_key > node.key:
            raise ValueError("New key is greater than current key.")
        node.key = new_key
        parent = node.parent
        if parent is not None and node.key < parent.key:
            self._cut(node, parent)
            self._cascade_cut(parent)
        if node.key < self.min_node.key:
            self.min_node = node

    def delete(self, node):
        self.decrease_key(node, float('-inf'))
        self.extract_min()

    def _iterate(self, node):
        while True:
            yield node
            if node.child is not None:
                for n in self._iterate(node.child):
                    yield n
            node = node.right
            if node == self.min_node:
                break


# Example Usage
heap = FibonacciHeap()
node1 = heap.insert(3)
node2 = heap.insert(5)
node3 = heap.insert(1)
node4 = heap.insert(9)
node5 = heap.insert(7)

print("Minimum Key:", heap.minimum())  # Output: 1

heap.decrease_key(node5, 2)
print("New Minimum Key after Decrease Key:", heap.minimum())  # Output: 1

print("Extracted Minimum Key:", heap.extract_min().key)  # Output: 1
print("Minimum Key after Extract Min:", heap.minimum())  # Output: 2

Output
Minimum Key: 1
New Minimum Key after Decrease Key: 1
Extracted Minimum Key: 1
Minimum Key after Extract Min: 2




Like Article
Suggest improvement
Previous
Next
Share your thoughts in the comments

Similar Reads