Open In App

Maximum number of removals of given subsequence from a string

Last Updated : 03 Oct, 2022
Improve
Improve
Like Article
Like
Save
Share
Report

Given string str, the task is to count the maximum number of possible operations that can be performed on str. An operation consists of taking a sub-sequence ‘gks’ from the string and removing it from the string.

Examples: 

Input: str = “ggkssk”
Output: 1
Explanation: After 1st operation: str = “gsk”
No further operation can be performed.

Input: str = “kgs”
Output: 0

Approach:  

  1. Take three variables g, gk, and gks which will store the occurrence of the sub-sequences ‘g’, ‘gk’, and ‘gks’ respectively.
  2. Traverse the string character by character: 
    • If str[i] = ‘g’ then update g = g + 1.
    • If str[i] = ‘k’ and g > 0 then update g = g – 1 and gk = gk + 1 as previously found ‘g’ now contributes to the sub-sequence ‘gk’ along with the current ‘k’.
    • Similarly, if str[i] = ‘s’ and gk > 0 then update gk = gk – 1 and gks = gks + 1.
  3. Print the value of gks in the end.

Below is the implementation of the above approach: 

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to return max possible operation
// of the given type that can be performed on str
int maxOperations(string str)
{
    int i, g, gk, gks;
    i = g = gk = gks = 0;
    for (i = 0; i < str.length(); i++) {
        if (str[i] == 'g') {
 
            // Increment count of sub-sequence 'g'
            g++;
        }
        else if (str[i] == 'k') {
 
            // Increment count of sub-sequence 'gk'
            // if 'g' is available
            if (g > 0) {
                g--;
                gk++;
            }
        }
        else if (str[i] == 's') {
 
            // Increment count of sub-sequence 'gks'
            // if sub-sequence 'gk' appeared previously
            if (gk > 0) {
                gk--;
                gks++;
            }
        }
    }
 
    // Return the count of sub-sequence 'gks'
    return gks;
}
 
// Driver code
int main()
{
    string a = "ggkssk";
    cout << maxOperations(a);
    return 0;
}


Java




// Java implementation of the approach
 
class GFG
{
// Function to return max possible
// operation of the given type that
// can be performed on str
static int maxOperations(String str)
{
    int i, g, gk, gks;
    i = g = gk = gks = 0;
    for (i = 0; i < str.length(); i++)
    {
        if (str.charAt(i) == 'g')
        {
 
            // Increment count of sub-sequence 'g'
            g++;
        }
        else if (str.charAt(i) == 'k')
        {
 
            // Increment count of sub-sequence 'gk'
            // if 'g' is available
            if (g > 0) {
                g--;
                gk++;
            }
        }
        else if (str.charAt(i) == 's')
        {
 
            // Increment count of sub-sequence 'gks'
            // if sub-sequence 'gk' appeared previously
            if (gk > 0)
            {
                gk--;
                gks++;
            }
        }
    }
 
    // Return the count of sub-sequence 'gks'
    return gks;
}
 
// Driver code
public static void main(String args[])
{
    String a = "ggkssk";
    System.out.print(maxOperations(a));
}
}
 
// This code is contributed
// by Akanksha Rai


Python 3




# Python 3 implementation of the approach
 
# Function to return max possible operation
# of the given type that can be performed
# on str
def maxOperations( str):
 
    i, g, gk, gks = 0, 0, 0, 0
    for i in range(len(str)) :
        if (str[i] == 'g') :
 
            # Increment count of sub-sequence 'g'
            g += 1
         
        elif (str[i] == 'k') :
 
            # Increment count of sub-sequence
            # 'gk', if 'g' is available
            if (g > 0) :
                g -= 1
                gk += 1
             
        elif (str[i] == 's') :
 
            # Increment count of sub-sequence 'gks'
            # if sub-sequence 'gk' appeared previously
            if (gk > 0) :
                gk -= 1
                gks += 1
 
    # Return the count of sub-sequence 'gks'
    return gks
 
# Driver code
if __name__ == "__main__":
     
    a = "ggkssk"
    print(maxOperations(a))
 
# This code is contributed by ita_c


C#




// C# implementation of the approach
using System ;
 
public class GFG{
    // Function to return max possible operation
    // of the given type that can be performed on str
    static int maxOperations(string str)
    {
        int i, g, gk, gks;
        i = g = gk = gks = 0;
        for (i = 0; i < str.Length; i++) {
            if (str[i] == 'g') {
     
                // Increment count of sub-sequence 'g'
                g++;
            }
            else if (str[i] == 'k') {
     
                // Increment count of sub-sequence 'gk'
                // if 'g' is available
                if (g > 0) {
                    g--;
                    gk++;
                }
            }
            else if (str[i] == 's') {
     
                // Increment count of sub-sequence 'gks'
                // if sub-sequence 'gk' appeared previously
                if (gk > 0) {
                    gk--;
                    gks++;
                }
            }
        }
     
        // Return the count of sub-sequence 'gks'
        return gks;
    }
     
    // Driver code
    public static void Main()
    {
        string a = "ggkssk";
        Console.WriteLine(maxOperations(a)) ;
     
    }
     
}


PHP




<?php
// PHP implementation of the approach
 
// Function to return max possible operation
// of the given type that can be performed on str
function maxOperations($str)
{
    $i = $g = $gk = $gks = 0;
    for ($i = 0; $i < strlen($str); $i++)
    {
        if ($str[$i] == 'g')
        {
 
            // Increment count of sub-sequence 'g'
            $g++;
        }
        else if ($str[$i] == 'k')
        {
 
            // Increment count of sub-sequence 'gk'
            // if 'g' is available
            if ($g > 0)
            {
                $g--;
                $gk++;
            }
        }
        else if ($str[$i] == 's')
        {
 
            // Increment count of sub-sequence 'gks'
            // if sub-sequence 'gk' appeared previously
            if ($gk > 0)
            {
                $gk--;
                $gks++;
            }
        }
    }
 
    // Return the count of sub-sequence 'gks'
    return $gks;
}
 
// Driver code
$a = "ggkssk";
echo maxOperations($a);
 
// This code is contributed
// by Akanksha Rai
?>


Javascript




<script>
 
// Javascript implementation of the approach
 
// Function to return max possible
// operation of the given type that
// can be performed on str
function maxOperations(str)
{
    let i, g, gk, gks;
    i = g = gk = gks = 0;
    for (i = 0; i < str.length; i++)
    {
        if (str[i] == 'g')
        {
   
            // Increment count of sub-sequence 'g'
            g++;
        }
        else if (str[i] == 'k')
        {
   
            // Increment count of sub-sequence 'gk'
            // if 'g' is available
            if (g > 0) {
                g--;
                gk++;
            }
        }
        else if (str[i] == 's')
        {
   
            // Increment count of sub-sequence 'gks'
            // if sub-sequence 'gk' appeared previously
            if (gk > 0)
            {
                gk--;
                gks++;
            }
        }
    }
   
    // Return the count of sub-sequence 'gks'
    return gks;
}
 
// Driver code
let a = "ggkssk";
document.write(maxOperations(a));
 
 
// This code is contributed by avanitrachhadiya2155
</script>


Output

1

Time Complexity: O(n)
Auxiliary Space: O(1)



Like Article
Suggest improvement
Previous
Next
Share your thoughts in the comments

Similar Reads