Open In App

Smallest Palindromic Subsequence of Even Length in Range [L, R]

Last Updated : 31 Dec, 2022
Improve
Improve
Like Article
Like
Save
Share
Report

Given a string of size N and some queries, the task is to find the lexicographically smallest palindromic subsequence of even length in range [L, R] for each query. If no such palindromic subsequence exists then the print -1.

Examples:

Input: str = “dbdeke”, query[][] = {{0, 5}, {1, 5}, {1, 3}} 
Output: dd 
ee 
-1 
Explanation: dd 
In the first query, possible palindromic subsequences are “dd”, “ee”, “ddee” and “dd” which are lexicographically smallest. 
In the second query, only possible palindromic subsequence is “ee”. 
In the third query, no such palindromic subsequence is possible.

Input: str = “abcd”, query[][] = {{0, 3}} 
Output: -1

Approach: The main observation of this problem is if there exists a palindromic subsequence, then it must be of length > 2. Therefore the resultant subsequence will be a string of length > 2 with the same characters. Choose the smallest character among those characters which have a frequency greater than 1 in the range [L, R] and print that character twice. If there is no such character exists then print -1.

Below is the implementation of above approach:

C++




// C++ program to find lexicographically smallest
// palindromic subsequence of even length
 
#include <bits/stdc++.h>
using namespace std;
const int N = 100001;
 
// Frequency array for each character
int f[26][N];
 
// Preprocess the frequency array calculation
void precompute(string s, int n)
{
    // Frequency array to track each character
    // in position 'i'
    for (int i = 0; i < n; i++) {
        f[s[i] - 'a'][i]++;
    }
 
    // Calculating prefix sum
    // over this frequency array
    // to get frequency of a character
    // in a range [L, R].
    for (int i = 0; i < 26; i++) {
        for (int j = 1; j < n; j++) {
            f[i][j] += f[i][j - 1];
        }
    }
}
 
// Util function for palindromic subsequences
int palindromicSubsequencesUtil(int L, int R)
{
 
    int c, ok = 0;
 
    // Find frequency of all characters
    for (int i = 0; i < 26; i++) {
 
        // For each character
        // find it's frequency
        // in range [L, R]
        int cnt = f[i][R];
        if (L > 0)
            cnt -= f[i][L - 1];
 
        if (cnt > 1) {
 
            // If frequency in this range is > 1,
            // then we must take this character,
            // as it will give
            // lexicographically smallest one
            ok = 1;
            c = i;
            break;
        }
    }
 
    // There is no character
    // in range [L, R] such
    // that it's frequency is > 1.
    if (ok == 0) {
 
        return -1;
    }
 
    // Return the character's value
    return c;
}
 
// Function to find lexicographically smallest
// palindromic subsequence of even length
void palindromicSubsequences(int Q[][2], int l)
{
    for (int i = 0; i < l; i++) {
 
        // Find in the palindromic subsequences
        int x
            = palindromicSubsequencesUtil(
                Q[i][0], Q[i][1]);
 
        // No such subsequence exists
        if (x == -1) {
            cout << -1 << "\n";
        }
        else {
            char c = 'a' + x;
            cout << c << c << "\n";
        }
    }
}
 
// Driver Code
int main()
{
    string str = "dbdeke";
    int Q[][2] = { { 0, 5 },
                   { 1, 5 },
                   { 1, 3 } };
    int n = str.size();
    int l = sizeof(Q) / sizeof(Q[0]);
 
    // Function calls
    precompute(str, n);
 
    palindromicSubsequences(Q, l);
 
    return 0;
}


Java




// Java program to find lexicographically smallest
// palindromic subsequence of even length
import java.util.*;
 
class GFG{
static int N = 100001;
 
// Frequency array for each character
static int [][]f = new int[26][N];
 
// Preprocess the frequency array calculation
static void precompute(String s, int n)
{
    // Frequency array to track each character
    // in position 'i'
    for (int i = 0; i < n; i++)
    {
        f[s.charAt(i) - 'a'][i]++;
    }
 
    // Calculating prefix sum
    // over this frequency array
    // to get frequency of a character
    // in a range [L, R].
    for (int i = 0; i < 26; i++)
    {
        for (int j = 1; j < n; j++)
        {
            f[i][j] += f[i][j - 1];
        }
    }
}
 
// Util function for palindromic subsequences
static int palindromicSubsequencesUtil(int L, int R)
{
    int c = 0, ok = 0;
 
    // Find frequency of all characters
    for (int i = 0; i < 26; i++)
    {
 
        // For each character
        // find it's frequency
        // in range [L, R]
        int cnt = f[i][R];
        if (L > 0)
            cnt -= f[i][L - 1];
 
        if (cnt > 1)
        {
 
            // If frequency in this range is > 1,
            // then we must take this character,
            // as it will give
            // lexicographically smallest one
            ok = 1;
            c = i;
            break;
        }
    }
 
    // There is no character
    // in range [L, R] such
    // that it's frequency is > 1.
    if (ok == 0)
    {
        return -1;
    }
 
    // Return the character's value
    return c;
}
 
// Function to find lexicographically smallest
// palindromic subsequence of even length
static void palindromicSubsequences(int Q[][], int l)
{
    for (int i = 0; i < l; i++)
    {
 
        // Find in the palindromic subsequences
        int x = palindromicSubsequencesUtil(
                           Q[i][0], Q[i][1]);
 
        // No such subsequence exists
        if (x == -1)
        {
            System.out.print(-1 + "\n");
        }
        else
        {
            char c = (char) ('a' + x);
            System.out.print((char) c + "" +
                             (char) c + "\n");
        }
    }
}
 
// Driver Code
public static void main(String[] args)
{
    String str = "dbdeke";
    int Q[][] = { { 0, 5 },
                  { 1, 5 },
                  { 1, 3 } };
    int n = str.length();
    int l = Q.length;
 
    // Function calls
    precompute(str, n);
 
    palindromicSubsequences(Q, l);
}
}
 
// This code is contributed by PrinciRaj1992


Python3




# Python3 program to find lexicographically
# smallest palindromic subsequence of even length
N = 100001
 
# Frequency array for each character
f = [[ 0 for x in range (N)]
         for y in range (26)]
 
# Preprocess the frequency array calculation
def precompute(s, n):
 
    # Frequency array to track each character
    # in position 'i'
    for i in range(n):
        f[ord(s[i]) - ord('a')][i] += 1
 
    # Calculating prefix sum
    # over this frequency array
    # to get frequency of a character
    # in a range [L, R].
    for i in range(26):
        for j in range(1, n):
            f[i][j] += f[i][j - 1]
 
# Util function for palindromic subsequences
def palindromicSubsequencesUtil(L, R):
 
    ok = 0
 
    # Find frequency of all characters
    for i in range(26):
 
        # For each character
        # find it's frequency
        # in range [L, R]
        cnt = f[i][R]
        if (L > 0):
            cnt -= f[i][L - 1]
 
        if (cnt > 1):
 
            # If frequency in this range is > 1,
            # then we must take this character,
            # as it will give
            # lexicographically smallest one
            ok = 1
            c = i
            break
         
    # There is no character
    # in range [L, R] such
    # that it's frequency is > 1.
    if (ok == 0):
        return -1
 
    # Return the character's value
    return c
 
# Function to find lexicographically smallest
# palindromic subsequence of even length
def palindromicSubsequences(Q, l):
 
    for i in range(l):
 
        # Find in the palindromic subsequences
        x = palindromicSubsequencesUtil(Q[i][0],
                                        Q[i][1])
 
        # No such subsequence exists
        if (x == -1):
            print(-1)
         
        else :
            c = ord('a') + x
            print(2 * chr(c))
 
# Driver Code
if __name__ == "__main__":
 
    st = "dbdeke"
    Q = [ [ 0, 5 ],
          [ 1, 5 ],
          [ 1, 3 ] ]
           
    n = len(st)
    l = len(Q)
 
    # Function calls
    precompute(st, n)
 
    palindromicSubsequences(Q, l)
 
# This code is contributed by chitranayal   


C#




// C# program to find lexicographically smallest
// palindromic subsequence of even length
using System;
 
class GFG{
     
static int N = 100001;
 
// Frequency array for each character
static int [,]f = new int[26, N];
 
// Preprocess the frequency array calculation
static void precompute(String s, int n)
{
     
    // Frequency array to track each character
    // in position 'i'
    for(int i = 0; i < n; i++)
    {
        f[s[i] - 'a', i]++;
    }
 
    // Calculating prefix sum
    // over this frequency array
    // to get frequency of a character
    // in a range [L, R].
    for(int i = 0; i < 26; i++)
    {
        for(int j = 1; j < n; j++)
        {
            f[i, j] += f[i, j - 1];
        }
    }
}
 
// Util function for palindromic subsequences
static int palindromicSubsequencesUtil(int L, int R)
{
    int c = 0, ok = 0;
 
    // Find frequency of all characters
    for(int i = 0; i < 26; i++)
    {
 
        // For each character
        // find it's frequency
        // in range [L, R]
        int cnt = f[i, R];
        if (L > 0)
            cnt -= f[i, L - 1];
 
        if (cnt > 1)
        {
 
            // If frequency in this range is > 1,
            // then we must take this character,
            // as it will give
            // lexicographically smallest one
            ok = 1;
            c = i;
            break;
        }
    }
 
    // There is no character
    // in range [L, R] such
    // that it's frequency is > 1.
    if (ok == 0)
    {
        return -1;
    }
 
    // Return the character's value
    return c;
}
 
// Function to find lexicographically smallest
// palindromic subsequence of even length
static void palindromicSubsequences(int [,]Q, int l)
{
    for(int i = 0; i < l; i++)
    {
         
        // Find in the palindromic subsequences
        int x = palindromicSubsequencesUtil(Q[i, 0],
                                            Q[i, 1]);
 
        // No such subsequence exists
        if (x == -1)
        {
            Console.Write(-1 + "\n");
        }
        else
        {
            char c = (char)('a' + x);
            Console.Write((char) c + "" +
                          (char) c + "\n");
        }
    }
}
 
// Driver Code
public static void Main(String[] args)
{
    String str = "dbdeke";
    int [,]Q = { { 0, 5 },
                 { 1, 5 },
                 { 1, 3 } };
    int n = str.Length;
    int l = Q.GetLength(0);
 
    // Function calls
    precompute(str, n);
 
    palindromicSubsequences(Q, l);
}
}
 
// This code is contributed by amal kumar choubey


Javascript




<script>
 
// Javascript program to find lexicographically smallest
// palindromic subsequence of even length
var N = 100001;
 
// Frequency array for each character
var f = Array.from(Array(26), ()=> Array(N).fill(0));
 
// Preprocess the frequency array calculation
function precompute(s, n)
{
    // Frequency array to track each character
    // in position 'i'
    for (var i = 0; i < n; i++) {
        f[s[i].charCodeAt(0) - 'a'.charCodeAt(0)][i]++;
    }
 
    // Calculating prefix sum
    // over this frequency array
    // to get frequency of a character
    // in a range [L, R].
    for (var i = 0; i < 26; i++) {
        for (var j = 1; j < n; j++) {
            f[i][j] += f[i][j - 1];
        }
    }
}
 
// Util function for palindromic subsequences
function palindromicSubsequencesUtil(L, R)
{
 
    var c, ok = 0;
 
    // Find frequency of all characters
    for (var i = 0; i < 26; i++) {
 
        // For each character
        // find it's frequency
        // in range [L, R]
        var cnt = f[i][R];
        if (L > 0)
            cnt -= f[i][L - 1];
 
        if (cnt > 1) {
 
            // If frequency in this range is > 1,
            // then we must take this character,
            // as it will give
            // lexicographically smallest one
            ok = 1;
            c = i;
            break;
        }
    }
 
    // There is no character
    // in range [L, R] such
    // that it's frequency is > 1.
    if (ok == 0) {
 
        return -1;
    }
 
    // Return the character's value
    return c;
}
 
// Function to find lexicographically smallest
// palindromic subsequence of even length
function palindromicSubsequences(Q, l)
{
    for (var i = 0; i < l; i++) {
 
        // Find in the palindromic subsequences
        var x
            = palindromicSubsequencesUtil(
                Q[i][0], Q[i][1]);
 
        // No such subsequence exists
        if (x == -1) {
            document.write( -1 + "<br>");
        }
        else {
            var c = String.fromCharCode('a'.charCodeAt(0) + x);
            document.write( c + c + "<br>");
        }
    }
}
 
// Driver Code
var str = "dbdeke";
var Q = [ [ 0, 5 ],
               [ 1, 5 ],
               [ 1, 3 ] ];
var n = str.length;
var l = Q.length;
 
// Function calls
precompute(str, n);
palindromicSubsequences(Q, l);
 
// This code is contributed by itsok.
</script>


Output: 

dd
ee
-1

 

Time Complexity: O(26 * N + 26 * Q), where N is the length of string
Auxiliary Space: O(26*N) 



Like Article
Suggest improvement
Previous
Next
Share your thoughts in the comments

Similar Reads