Open In App

Queue Operations

Last Updated : 18 Feb, 2023
Improve
Improve
Like Article
Like
Save
Share
Report

The queue is an abstract data type which is defined by following structure and operations.

Queue is structured as an ordered collection of items which are added at one end called rear end, and other end called front end.

The queue operations are as follows:

  1. create
  2. enqueue
  3. dequeue
  4. isEmpty
  5. isFull
  6. size

1) create :  Creates and initializes new queue that is empty, it does not require any parameter and returns an empty queue.

2) enqueue:  Add a new element to the rear of queue . It requires the element to be added and returns nothing.

3) dequeue:  removes the elements from the front of queue. It does not require any parameters and returns the deleted item.

4) isEmpty: Check the whether the queue is empty or not. It does not require any parameter and returns a Boolean value.

Given N integers, the task is to insert those elements in the queue. Also, given M integers, the task is to find the frequency of each number in the Queue.

Examples:

Input: 
N = 8 
1 2 3 4 5 2 3 1  (N integers)
M = 5
1 3 2 9 10  (M integers)
Output:
2 2 2 -1 -1

Explanation:
After inserting 1, 2, 3, 4, 5, 2, 3, 1 into the queue,  frequency of 1 is 2, 3 is 2, 2 is 2, 9 is -1 and 10 is -1 (since, 9 and 10 is not there in the queue).

Input:
N = 5 
5 2 2 4 5   (N integers)
M = 5
2 3 4 5 1   (M integers)
Output:
2 -1 1 2 -1

Approach: The given problem can be solved by using a simple queue. The idea is to insert N integers one by one into the queue and then check the frequency of M integers. Separate functions will be created to perform both operations. Follow the steps below to solve the problem.

  • Create a queue and push all given integers into the queue.
  • After pushing all the elements into the queue create another function for counting the frequency of given M elements one by one.
  • Take a variable cntFrequency to keep track of frequency of current element.
  • Pop all the elements from queue till its size and each time check if current element in queue is equal to element for which we are checking for frequency.
    – if both are equal, increment cntFrequency by 1
    – else, do nothing.
  • Push the current element back to the queue so that for next case queue will not get disturbed.
  • Print the frequency of each element found.

Below is the implementation of the above approach:

C++




// C++ Program to implement above approach
#include <bits/stdc++.h>
using namespace std;
 
// Helper class Geeks to implement
// insert() and findFrequency()
class Geeks
{
 
  // Function to insert
  // element into the queue
  public:
  void insert(queue<int> &q, int k)
  {
 
    // adding N integers into the Queue
    q.push(k);
  }
  // Function to find frequency of an element
  // return the frequency of k
  int findFrequency(queue<int> &q, int k)
  {
 
    // to count frequency of elements
    int cntFrequency = 0;
 
    // storing size of queue in a variable
    int h = q.size();
 
    // running loop until size becomes zero
    while (h)
    {
      h = h - 1;
 
      // storing and deleting
      // first element from queue
      int x = q.front();
      q.pop();
      // comparing if it's equal to integer K
      // that belongs to M
      if (x == k)
      {
 
        // increment count
        cntFrequency += 1;
      }
      // add element back to queue because
      // we also want N integers
      q.push(x);
    }
    // return the count
    return cntFrequency;
  }
};
 
// Driver code
 
int main()
{
  queue<int> q;
  int N = 8;
  int a[N] = {1, 2, 3, 4, 5, 2, 3, 1};
  int M = 5;
  int b[M] = {1, 3, 2, 9, 10};
 
  // Invoking object of Geeks class
  Geeks obj;
 
  for (int i = 0; i < N; i++)
  {
 
    // calling insert()
    // to add elements in queue
    obj.insert(q, a[i]);
  }
 
  for (int i = 0; i < M; i++)
  {
 
    // calling findFrequency()
    int f = obj.findFrequency(q, b[i]);
    if (f != 0)
    {
 
      // variable f
      // will have final frequency
      cout << f << " ";
    }
    else
    {
      cout << ("-1") << " ";
    }
  }
}
 
// This code is contributed by adityamaharshi21.


Java




// Java Program to implement above approach
import java.io.*;
import java.util.*;
 
class GFG {
 
    // Driver code
    public static void main(String[] args)
    {
        // Declaring Queue
        Queue<Integer> q = new LinkedList<>();
        int N = 8;
        int[] a = new int[] { 1, 2, 3, 4, 5, 2, 3, 1 };
        int M = 5;
        int[] b = new int[] { 1, 3, 2, 9, 10 };
 
        // Invoking object of Geeks class
        Geeks obj = new Geeks();
 
        for (int i = 0; i < N; i++) {
            // calling insert()
            // to add elements in queue
            obj.insert(q, a[i]);
        }
 
        for (int i = 0; i < M; i++) {
            // calling findFrequency()
            int f = obj.findFrequency(q, b[i]);
            if (f != 0) {
                // variable f
                // will have final frequency
                System.out.print(f + " ");
            }
            else {
                System.out.print("-1"
                                 + " ");
            }
        }
    }
}
 
// Helper class Geeks to implement
// insert() and findFrequency()
class Geeks {
 
    // Function to insert
    // element into the queue
    static void insert(Queue<Integer> q, int k)
    {
        // adding N integers into the Queue
        q.add(k);
    }
 
    // Function to find frequency of an element
    // return the frequency of k
    static int findFrequency(Queue<Integer> q, int k)
    {
        // to count frequency of elements
        int cntFrequency = 0;
 
        // storing size of queue in a variable
        int size = q.size();
 
        // running loop until size becomes zero
        while (size-- != 0) {
 
            // storing and deleting
            // first element from queue
            int x = q.poll();
 
            // comparing if it's equal to integer K
            // that belongs to M
            if (x == k) {
                // increment count
                cntFrequency++;
            }
            // add element back to queue because
            // we also want N integers
            q.add(x);
        }
        // return the count
        return cntFrequency;
    }
}


Python3




# Python Program to implement above approach
import collections
 
# Helper class Geeks to implement
# insert() and findFrequency()
class Geeks:
 
    # Function to insert
    # element into the queue
    def insert(self, q, k):
       
        # adding N integers into the Queue
        q.append(k)
 
    # Function to find frequency of an element
    # return the frequency of k
    def findFrequency(self, q, k):
       
        # to count frequency of elements
        cntFrequency = 0
 
        # storing size of queue in a variable
        size = len(q)
 
        # running loop until size becomes zero
        while (size):
            size = size - 1
             
            # storing and deleting
            # first element from queue
            x = q.popleft()
 
            # comparing if it's equal to integer K
            # that belongs to M
            if (x == k):
               
                # increment count
                cntFrequency += 1
                 
            # add element back to queue because
            # we also want N integers
            q.append(x)
 
        # return the count
        return cntFrequency
 
# Declaring Queue
q = collections.deque()
N = 8
a = [1, 2, 3, 4, 5, 2, 3, 1]
M = 5
b = [1, 3, 2, 9, 10]
 
# Invoking object of Geeks class
obj = Geeks()
 
for i in range(N):
 
    # calling insert()
    # to add elements in queue
    obj.insert(q, a[i])
 
for i in range(M):
 
    # calling findFrequency()
    f = obj.findFrequency(q, b[i])
    if (f != 0):
       
        # variable f
        # will have final frequency
        print(f, end=" ")
    else:
        print("-1", end=" ")
print(" ")
 
# This code is contributed by gfgking.


C#




// C# Program to implement above approach
using System;
using System.Collections.Generic;
 
public class GFG {
   
  // Helper class Geeks to implement
// insert() and findFrequency()
public class Geeks {
 
    // Function to insert
    // element into the queue
   public void insert(Queue<int> q, int k)
    {
        // adding N integers into the Queue
        q.Enqueue(k);
    }
 
    // Function to find frequency of an element
    // return the frequency of k
    public int findFrequency(Queue<int> q, int k)
    {
        // to count frequency of elements
        int cntFrequency = 0;
 
        // storing size of queue in a variable
        int size = q.Count;
 
        // running loop until size becomes zero
        while (size-- != 0) {
 
            // storing and deleting
            // first element from queue
            int x = q.Peek();
            q.Dequeue();
 
            // comparing if it's equal to integer K
            // that belongs to M
            if (x == k) {
                // increment count
                cntFrequency++;
            }
            // add element back to queue because
            // we also want N integers
            q.Enqueue(x);
        }
        // return the count
        return cntFrequency;
    }
}
 
    // Driver code
    public static void Main()
    {
       
        // Declaring Queue
        Queue<int> q = new Queue<int>();
        int N = 8;
        int[] a = new int[] { 1, 2, 3, 4, 5, 2, 3, 1 };
        int M = 5;
        int[] b = new int[] { 1, 3, 2, 9, 10 };
 
        // Invoking object of Geeks class
        Geeks obj = new Geeks();
 
        for (int i = 0; i < N; i++)
        {
           
            // calling insert()
            // to add elements in queue
            obj.insert(q, a[i]);
        }
 
        for (int i = 0; i < M; i++)
        {
           
            // calling findFrequency()
            int f = obj.findFrequency(q, b[i]);
            if (f != 0)
            {
               
                // variable f
                // will have final frequency
                Console.Write(f + " ");
            }
            else {
                Console.Write("-1"
                                 + " ");
            }
        }
    }
}
 
// This code is contributed by SURENDRA_GANGWAR.


Javascript




// JS Program to implement above approach
 
// Helper class Geeks to implement
// insert() and findFrequency()
class Geeks {
 
    // Function to insert
    // element into the queue
    insert(q, k) {
 
        // adding N integers into the Queue
        q.unshift(k);
    }
    // Function to find frequency of an element
    // return the frequency of k
    findFrequency(q, k) {
 
        // to count frequency of elements
        let cntFrequency = 0;
 
        // storing size of queue in a variable
        let size = q.length;
 
        // running loop until size becomes zero
        while (size) {
            size = size - 1;
 
            // storing and deleting
            // first element from queue
            let x = q.pop();
 
            // comparing if it's equal to integer K
            // that belongs to M
            if (x == k) {
 
                // increment count
                cntFrequency += 1;
            }
            // add element back to queue because
            // we also want N integers
            q.unshift(x);
        }
        // return the count
        return cntFrequency;
    }
}
 
 
// Driver code
 
let q = new Array;
let N = 8;
let a = [1, 2, 3, 4, 5, 2, 3, 1];
let M = 5;
let b = [1, 3, 2, 9, 10];
 
// Invoking object of Geeks class
let obj = new Geeks;
 
for (let i = 0; i < N; i++) {
 
    // calling insert()
    // to add elements in queue
    obj.insert(q, a[i]);
}
 
for (let i = 0; i < M; i++) {
 
    // calling findFrequency()
    f = obj.findFrequency(q, b[i]);
    if (f != 0) {
 
        // variable f
        // will have final frequency
        console.log(f);
    }
    else {
        console.log("-1");
    }
}
 
// This code is contributed by adityamaharshi21.


Output

2 2 2 -1 -1 

Time Complexity: O(N*M)
Auxiliary Space: O(N)



Like Article
Suggest improvement
Previous
Next
Share your thoughts in the comments

Similar Reads