Open In App

Maximum subarray size, such that all subarrays of that size have sum less than k

Last Updated : 10 Apr, 2024
Improve
Improve
Like Article
Like
Save
Share
Report

Given an array of n positive integers and a positive integer k, the task is to find the maximum subarray size such that all subarrays of that size have the sum of elements less than or equals to k.

Examples : 

Input : arr[] = {1, 2, 3, 4} and k = 8. Output : 2 Sum of subarrays of size 1: 1, 2, 3, 4. Sum of subarrays of size 2: 3, 5, 7. Sum of subarrays of size 3: 6, 9. Sum of subarrays of size 4: 10. So, maximum subarray size such that all subarrays of that size have the sum of elements less than 8 is 2. Input : arr[] = {1, 2, 10, 4} and k = 8. Output : -1 There is an array element with value greater than k, so subarray sum cannot be less than k. Input : arr[] = {1, 2, 10, 4} and K = 14 Output : 2

Naive Approach: Firstly, the required subarray size must lie between 1 to n. Now, since all the array elements are positive integers, we can say that the prefix sum of any subarray shall be strictly increasing. Thus, we can say that 

if arr[i] + arr[i + 1] + ..... + arr[j - 1] + arr[j] <= K
then arr[i] + arr[i + 1] + ..... + arr[j - 1] <= K, as arr[j] is a positive integer.
  • Perform Binary Search over the range 1 to n and find the highest subarray size such that all the subarrays of that size have the sum of elements less than or equals to k.

Implementation:

C++
// C++ program to find maximum 
// subarray size, such that all 
// subarrays of that size have 
// sum less than K.
#include<bits/stdc++.h>
using namespace std;

// Search for the maximum length of 
// required subarray.
int bsearch(int prefixsum[], int n, 
                             int k)
{
    // Initialize result
    int ans = -1; 

    // Do Binary Search for largest 
    // subarray size 
    int left = 1, right = n;
    while (left <= right)
    {
        int mid = (left + right) / 2;

        // Check for all subarrays after mid
        int i;
        for (i = mid; i <= n; i++)
        {
            // Checking if all the subarrays
            //  of a size less than k.
            if (prefixsum[i] - prefixsum[i - mid] > k)
                break;
        }

        // All subarrays of size mid have 
        // sum less than or equal to k
        if (i == n + 1)
        {
            left = mid + 1;
            ans = mid;
        }

        // We found a subarray of size mid 
        // with sum greater than k
        else
            right = mid - 1;
    }
    return ans;
}

// Return the maximum subarray size,
// such that all subarray of that size
// have sum less than K.
int maxSize(int arr[], int n, int k)
{
    // Initialize prefix sum array as 0.
    int prefixsum[n + 1];
    memset(prefixsum, 0, sizeof(prefixsum));

    // Finding prefix sum of the array.
    for (int i = 0; i < n; i++)
        prefixsum[i + 1] = prefixsum[i] + 
                           arr[i];

    return bsearch(prefixsum, n, k);
}

// Driver code
int main()
{
    int arr[] = {1, 2, 10, 4};
    int n = sizeof(arr) / sizeof(arr[0]);
    int k = 14;
    cout << maxSize(arr, n, k) << endl;
    return 0;
}
Java
// Java program to find maximum 
// subarray size, such that all 
// subarrays of that size have
// sum less than K.
import java.util.Arrays;

class GFG 
{
    
    // Search for the maximum length 
    // of required subarray.
    static int bsearch(int prefixsum[], 
                       int n, int k)
    {
        // Initialize result
        int ans = -1; 

        // Do Binary Search for largest 
        // subarray size
        int left = 1, right = n;
        
        while (left <= right) 
        {
            int mid = (left + right) / 2;

            // Check for all subarrays after mid
            int i;
            for (i = mid; i <= n; i++) 
            {
                
                // Checking if all the subarrays 
                // of a size is less than k.
                if (prefixsum[i] - prefixsum[i - mid] > k)
                    break;
            }

            // All subarrays of size mid have 
            // sum less than or equal to k
            if (i == n + 1)
            {
                left = mid + 1;
                ans = mid;
            }

            // We found a subarray of size mid 
            // with sum greater than k
            else
                right = mid - 1;
        }

        return ans;
    }

    // Return the maximum subarray size, such 
    // that all subarray of that size have 
    // sum less than K.
    static int maxSize(int arr[], int n, int k)
    {
        
        // Initialize prefix sum array as 0.
        int prefixsum[] = new int[n + 1];
        Arrays.fill(prefixsum, 0);

        // Finding prefix sum of the array.
        for (int i = 0; i < n; i++)
            prefixsum[i + 1] = prefixsum[i] + arr[i];

        return bsearch(prefixsum, n, k);
    }
    
    // Driver code
    public static void main(String arg[])
    {
        int arr[] = { 1, 2, 10, 4 };
        int n = arr.length;
        int k = 14;
        System.out.println(maxSize(arr, n, k));
    }
}

// This code is contributed by Anant Agarwal.
Python3
# Python3 program to find maximum 
# subarray size, such that all 
# subarrays of that size have
# sum less than K.

# Search for the maximum length of 
# required subarray.
def bsearch(prefixsum, n, k):

    # Initialize result
    # Do Binary Search for largest
    # subarray size
    ans, left, right = -1, 1, n

    while (left <= right):

        # Check for all subarrays after mid
        mid = (left + right)//2

        for i in range(mid, n + 1):

            # Checking if all the subarray of 
            # a size is less than k.
            if (prefixsum[i] - prefixsum[i - mid] > k):
                i = i - 1
                break
        i = i + 1
        if (i == n + 1):
            left = mid + 1
            ans = mid
        # We found a subarray of size mid with sum
        # greater than k
        else:
            right = mid - 1

    return ans;

# Return the maximum subarray size, such 
# that all subarray of that size have 
# sum less than K.
def maxSize(arr, n, k):
    prefixsum = [0 for x in range(n + 1)]
    
    # Finding prefix sum of the array.
    for i in range(n):
        prefixsum[i + 1] = prefixsum[i] + arr[i]

    return bsearch(prefixsum, n, k);

# Driver Code
arr = [ 1, 2, 10, 4 ]
n = len(arr)
k = 14
print (maxSize(arr, n, k))

# This code is contributed by Afzal
C#
// C# program to find maximum 
// subarray size, such that all 
// subarrays of that size have
// sum less than K.
using System;

class GFG {
    
    // Search for the maximum length 
    // of required subarray.
    static int bsearch(int []prefixsum, 
                          int n, int k)
    {
        
        // Initialize result
        int ans = -1; 

        // Do Binary Search for 
        // largest subarray size
        int left = 1, right = n;
        
        while (left <= right) 
        {
            int mid = (left + right) / 2;

            // Check for all subarrays 
            // after mid
            int i;
            for (i = mid; i <= n; i++) 
            {
                
                // Checking if all the 
                // subarrays of a size is
                // less than k.
                if (prefixsum[i] - 
                     prefixsum[i - mid] > k)
                    break;
            }

            // All subarrays of size mid have 
            // sum less than or equal to k
            if (i == n + 1)
            {
                left = mid + 1;
                ans = mid;
            }

            // We found a subarray of size mid 
            // with sum greater than k
            else
                right = mid - 1;
        }

        return ans;
    }

    // Return the maximum subarray size, such 
    // that all subarray of that size have 
    // sum less than K.
    static int maxSize(int []arr, int n, int k)
    {
        
        // Initialize prefix sum array as 0.
        int []prefixsum = new int[n + 1];
        for(int i=0;i<n+1;i++)
        prefixsum[i]=0;
        

        // Finding prefix sum of the array.
        for (int i = 0; i < n; i++)
            prefixsum[i + 1] = prefixsum[i]
                                     + arr[i];

        return bsearch(prefixsum, n, k);
    }
    
    // Driver code
    public static void Main()
    {
        int []arr = { 1, 2, 10, 4 };
        int n = arr.Length;
        int k = 14;
        
        Console.Write(maxSize(arr, n, k));
    }
}

// This code is contributed by nitin mittal.
Javascript
<script>

// javascript program to find maximum 
// subarray size, such that all 
// subarrays of that size have
// sum less than K.

    // Search for the maximum length
    // of required subarray.
    function bsearch(prefixsum , n , k) 
    {
        // Initialize result
        var ans = -1;

        // Do Binary Search for largest
        // subarray size
        var left = 1, right = n;

        while (left <= right) {
            var mid = parseInt((left + right) / 2);

            // Check for all subarrays after mid
            var i;
            for (i = mid; i <= n; i++) {

                // Checking if all the subarrays
                // of a size is less than k.
                if (prefixsum[i] - prefixsum[i - mid] > k)
                    break;
            }

            // All subarrays of size mid have
            // sum less than or equal to k
            if (i == n + 1) {
                left = mid + 1;
                ans = mid;
            }

            // We found a subarray of size mid
            // with sum greater than k
            else
                right = mid - 1;
        }

        return ans;
    }

    // Return the maximum subarray size, such
    // that all subarray of that size have
    // sum less than K.
    function maxSize(arr , n , k) {

        // Initialize prefix sum array as 0.
        var prefixsum = Array(n + 1).fill(0);
    
        // Finding prefix sum of the array.
        for (i = 0; i < n; i++)
            prefixsum[i + 1] = prefixsum[i] + arr[i];

        return bsearch(prefixsum, n, k);
    }

    // Driver code
        var arr = [ 1, 2, 10, 4 ];
        var n = arr.length;
        var k = 14;
        document.write(maxSize(arr, n, k));

// This code contributed by Rajput-Ji

</script>
PHP
<?php 
// PHP program to find maximum subarray 
// size, such that all subarrays of that 
// size have sum less than K.

// Search for the maximum length of 
// required subarray.
function bsearch(&$prefixsum, $n, $k)
{
    // Initialize result
    $ans = -1; 

    // Do Binary Search for largest 
    // subarray size 
    $left = 1;
    $right = $n;
    while ($left <= $right)
    {
        $mid = intval(($left + $right) / 2);

        // Check for all subarrays after mid
        for ($i = $mid; $i <= $n; $i++)
        {
            // Checking if all the subarrays
            // of a size less than k.
            if ($prefixsum[$i] - $prefixsum[$i - 
                                 $mid] > $k)
                break;
        }

        // All subarrays of size mid have 
        // sum less than or equal to k
        if ($i == $n + 1)
        {
            $left = $mid + 1;
            $ans = $mid;
        }

        // We found a subarray of size mid 
        // with sum greater than k
        else
            $right = $mid - 1;
    }
    return $ans;
}

// Return the maximum subarray size,
// such that all subarray of that size
// have sum less than K.
function maxSize(&$arr, $n, $k)
{
    // Initialize prefix sum array as 0.
    $prefixsum = array_fill(0, $n + 1, NULL);

    // Finding prefix sum of the array.
    for ($i = 0; $i < $n; $i++)
        $prefixsum[$i + 1] = $prefixsum[$i] + 
                             $arr[$i];

    return bsearch($prefixsum, $n, $k);
}

// Driver code
$arr = array(1, 2, 10, 4);
$n = sizeof($arr);
$k = 14;
echo maxSize($arr, $n, $k) . "\n";

// This code is contributed 
// by ChitraNayal
?>

Output
2

Time Complexity: O(n log n), where N represents the size of the given array.
Auxiliary Space: O(n), where N represents the size of the given array.

Efficient Approach: This method uses the Sliding Window Technique to solve the given problem. 

  • The approach is to find the minimum subarray size whose sum is greater than integer k.
  • Increase the window size from the end up to which the sum of that window is greater than k.
  • Now, store that subarray size if it is smaller than the already stored subarray size (in variable ans).
  • Now, decrement the subarray size from the beginning. The variable ans will store the minimum subarray size whose sum is greater than k.
  • At last, (ans-1) is the actual answer. Then, that subarray size – 1 is the maximum subarray size, such that all subarray of that size will have sum less than or equal to k.

Implementation:

C++
// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;

// Function to find the 
// largest size subarray
void func(vector<int> arr, 
          int k, int n)
{
    // Variable declaration
    int ans = n;
    int sum = 0;
    int start = 0;
    bool not_possible = false;
    // Loop till N
    for (int end = 0; end < n; end++)
    {
        // Sliding window from left
        sum += arr[end];

        while (sum > k) {
            // Sliding window from right
            sum -= arr[start];
            start++;

            // Storing sub-array size - 1
            // for which sum was greater than k
            ans = min(ans, end - start + 1);

            // Sum will be 0 if start>end
            // because all elements are positive
            // start>end only when arr[end]>k i.e,
            // there is an array element with
            // value greater than k, so sub-array
            // sum cannot be less than k.
            if (sum == 0){
                not_possible = true;
                break;
            }
        }
        if(not_possible){
            ans = -1;
            break;
        }
    }

    // Print the answer
    cout << ans;
}

// Driver code
int main()
{
    vector<int> arr{ 1, 2, 3, 4 };
    int k = 8;
    int n = arr.size();

    // Function call
    func(arr, k, n);

    return 0;
}

// This code is improved by Susobhan Akhuli
Java
// Java program for the above approach
import java.io.*;

class GFG {

    // Function to find the
    // largest size subarray
    public static void func(int arr[], int k, int n)
    {

        // Variable declaration
        int ans = n;
        int sum = 0;
        int start = 0;
        boolean not_possible = false;
        // Loop till N
        for (int end = 0; end < n; end++) {

            // Sliding window from left
            sum += (int)arr[end];

            while (sum > k) {

                // Sliding window from right
                sum -= (int)arr[start];
                start++;

                // Storing sub-array size - 1
                // for which sum was greater than k
                ans = Math.min(ans, end - start + 1);

                // Sum will be 0 if start>end
                // because all elements are positive
                // start>end only when arr[end]>k i.e,
                // there is an array element with
                // value greater than k, so sub-array
                // sum cannot be less than k.
                if (sum == 0) {
                    not_possible = true;
                    break;
                }
            }
            if (not_possible) {
                ans = -1;
                break;
            }
        }

        // Print the answer
        System.out.println(ans);
    }

    // Driver code
    public static void main(String[] args)
    {
        int arr[] = { 1, 2, 3, 4 };
        int k = 8;
        int n = arr.length;

        // Function call
        func(arr, k, n);
    }
}

// This code is contributed by rag2127
// This code is improved by Susobhan Akhuli
Python3
# Python3 program for the above approach

# Function to find the 
# largest size subarray
def func(arr, k, n):
    
    # Variable declaration
    ans = n
    Sum = 0
    start = 0
    not_possible = False
    
    # Loop till N
    for end in range(n):

        # Sliding window from left
        Sum += arr[end]

        while (Sum > k):
            
            # Sliding window from right
            Sum -= arr[start]
            start += 1

            # Storing sub-array size - 1
            # for which sum was greater than k
            ans = min(ans, end - start + 1)

            # Sum will be 0 if start>end
            # because all elements are positive
            # start>end only when arr[end]>k i.e,
            # there is an array element with
            # value greater than k, so sub-array
            # sum cannot be less than k.
            if (Sum == 0):
                not_possible = True
                break
                
        if (not_possible):
            ans = -1
            break
            
    # Print the answer
    print(ans)

# Driver code
arr = [ 0, 2, 3, 4 ]
k = 8
n = len(arr)

# Function call
func(arr, k, n)

# This code is contributed by avanitrachhadiya2155
# This code is improved by Susobhan Akhuli
C#
// C# program for the above approach
using System; 
using System.Collections;

class GFG{
     
// Function to find the 
// largest size subarray
static void func(ArrayList arr, 
                 int k, int n)
{
    
    // Variable declaration
    int ans = n;
    int sum = 0;
    int start = 0;
    bool not_possible = false;
    // Loop till N
    for(int end = 0; end < n; end++)
    {
        
        // Sliding window from left
        sum += (int)arr[end];
 
        while (sum > k) 
        {
            
            // Sliding window from right
            sum -= (int)arr[start];
            start++;
 
            // Storing sub-array size - 1
            // for which sum was greater than k
            ans = Math.Min(ans, end - start + 1);
 
            // Sum will be 0 if start>end
            // because all elements are positive
            // start>end only when arr[end]>k i.e,
            // there is an array element with
            // value greater than k, so sub-array
            // sum cannot be less than k.
            if (sum == 0){
                not_possible = true;
                break;
            }
        }
        if(not_possible){
            ans = -1;
            break;
        }
    }
    
    // Print the answer
    Console.Write(ans);
}
 
// Driver code
public static void Main(string[] args)
{
    ArrayList arr = new ArrayList(){ 1, 2, 3, 4 };
    int k = 8;
    int n = arr.Count;
 
    // Function call
    func(arr, k, n);
}
}

// This code is contributed by rutvik_56
// This code is improved by Susobhan Akhuli
Javascript
<script>
// Javascript program for the above approach

// Function to find the 
// largest size subarray
function func(arr, k, n)
{
    // Variable declaration
    let ans = n;
    let sum = 0;
    let start = 0;
    let not_possible = false;
    
    // Loop till N
    for (let end = 0; end < n; end++)
    {
        // Sliding window from left
        sum += arr[end];

        while (sum > k) {
            // Sliding window from right
            sum -= arr[start];
            start++;

            // Storing sub-array size - 1
            // for which sum was greater than k
            ans = Math.min(ans, end - start + 1);

            // Sum will be 0 if start>end
            // because all elements are positive
            // start>end only when arr[end]>k i.e,
            // there is an array element with
            // value greater than k, so sub-array
            // sum cannot be less than k.
            if (sum == 0){
                not_possible = true;
                break;
            }
        }
        if(not_possible){
            ans = -1;
            break;
        }
    }

    // Print the answer
    document.write(ans);
}

// Driver code
    let arr = [ 1, 2, 3, 4 ];
    let k = 8;
    let n = arr.length;

    // Function call
    func(arr, k, n);
    
// This code is improved by Susobhan Akhuli
</script>

Output
2

Time Complexity: O(N), where N represents the size of the given array.
Auxiliary Space: O(1), no extra space is required, so it is a constant.



Like Article
Suggest improvement
Previous
Next
Share your thoughts in the comments

Similar Reads