// A simple C# program to implement
// Game of Life
using System;
public class GFG {
public static void Main()
{
int M = 10, N = 10;
// Initializing the grid.
int[,] grid = {
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
{ 0, 0, 0, 1, 1, 0, 0, 0, 0, 0 },
{ 0, 0, 0, 0, 1, 0, 0, 0, 0, 0 },
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
{ 0, 0, 0, 1, 1, 0, 0, 0, 0, 0 },
{ 0, 0, 1, 1, 0, 0, 0, 0, 0, 0 },
{ 0, 0, 0, 0, 0, 1, 0, 0, 0, 0 },
{ 0, 0, 0, 0, 1, 0, 0, 0, 0, 0 },
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }
};
// Displaying the grid
Console.WriteLine("Original Generation");
for (int i = 0; i < M; i++)
{
for (int j = 0; j < N; j++)
{
if (grid[i,j] == 0)
Console.Write(".");
else
Console.Write("*");
}
Console.WriteLine();
}
Console.WriteLine();
nextGeneration(grid, M, N);
}
// Function to print next generation
static void nextGeneration(int [,]grid,
int M, int N)
{
int[,] future = new int[M,N];
// Loop through every cell
for (int l = 1; l < M - 1; l++)
{
for (int m = 1; m < N - 1; m++)
{
// finding no Of Neighbours
// that are alive
int aliveNeighbours = 0;
for (int i = -1; i <= 1; i++)
for (int j = -1; j <= 1; j++)
aliveNeighbours +=
grid[l + i,m + j];
// The cell needs to be subtracted
// from its neighbours as it was
// counted before
aliveNeighbours -= grid[l,m];
// Implementing the Rules of Life
// Cell is lonely and dies
if ((grid[l,m] == 1) &&
(aliveNeighbours < 2))
future[l,m] = 0;
// Cell dies due to over population
else if ((grid[l,m] == 1) &&
(aliveNeighbours > 3))
future[l,m] = 0;
// A new cell is born
else if ((grid[l,m] == 0) &&
(aliveNeighbours == 3))
future[l,m] = 1;
// Remains the same
else
future[l,m] = grid[l,m];
}
}
Console.WriteLine("Next Generation");
for (int i = 0; i < M; i++)
{
for (int j = 0; j < N; j++)
{
if (future[i,j] == 0)
Console.Write(".");
else
Console.Write("*");
}
Console.WriteLine();
}
}
}
// This code is contributed by Sam007.