Open In App

Find all permuted rows of a given row in a matrix

Last Updated : 11 Sep, 2023
Improve
Improve
Like Article
Like
Save
Share
Report

We are given an m*n matrix of positive integers and a row number. The task is to find all rows in given matrix which are permutations of given row elements. It is also given that values in every row are distinct.

Examples:  

Input : mat[][] = {{3, 1, 4, 2}, 
                   {1, 6, 9, 3},
                   {1, 2, 3, 4},
                   {4, 3, 2, 1}}
        row = 3    
Output: 0, 2
Rows at indexes 0 and 2 are permutations of
row at index 3. 

A simple solution is to one by one sort all rows and check all rows. If any row is completely equal to the given row, that means the current row is a permutation of the given row. The time complexity for this approach will be O(m*n log n).

An efficient approach is to use hashing. Simply create a hash set for the given row. After hash set creation, traverse through the remaining rows, and for every row check if all of its elements are present in the hash set or not.  

Implementation:

CPP




// C++ program to find all permutations of a given row
#include<bits/stdc++.h>
#define MAX 100
  
using namespace std;
  
// Function to find all permuted rows of a given row r
void permutatedRows(int mat[][MAX], int m, int n, int r)
{
    // Creating an empty set
    unordered_set<int> s;
  
    // Count frequencies of elements in given row r
    for (int j=0; j<n; j++)
        s.insert(mat[r][j]);
  
    // Traverse through all remaining rows
    for (int i=0; i<m; i++)
    {
        // we do not need to check for given row r
        if (i==r)
            continue;
  
        // initialize hash i.e; count frequencies
        // of elements in row i
        int j;
        for (j=0; j<n; j++)
            if (s.find(mat[i][j]) == s.end())
                break;
        if (j != n)
           continue;
  
        cout << i << ", ";
    }
}
  
// Driver program to run the case
int main()
{
    int m = 4, n = 4,r = 3;
    int mat[][MAX] = {{3, 1, 4, 2},
                      {1, 6, 9, 3},
                      {1, 2, 3, 4},
                      {4, 3, 2, 1}};
    permutatedRows(mat, m, n, r);
    return 0;
}


Java




// Java program to find all permutations of a given row
import java.util.*;
  
class GFG
{
      
static int MAX = 100;
  
// Function to find all permuted rows of a given row r
static void permutatedRows(int mat[][], int m, int n, int r)
{
    // Creating an empty set
    LinkedHashSet<Integer> s = new LinkedHashSet<>();
  
  
    // Count frequencies of elements in given row r
    for (int j = 0; j < n; j++)
        s.add(mat[r][j]);
  
    // Traverse through all remaining rows
    for (int i = 0; i < m; i++)
    {
        // we do not need to check for given row r
        if (i == r)
            continue;
  
        // initialize hash i.e; count frequencies
        // of elements in row i
        int j;
        for (j = 0; j < n; j++)
            if (!s.contains(mat[i][j]))
                break;
        if (j != n)
        continue;
  
        System.out.print(i+", ");
    }
}
  
// Driver program to run the case
public static void main(String[] args)
{
    int m = 4, n = 4,r = 3;
    int mat[][] = {{3, 1, 4, 2},
                    {1, 6, 9, 3},
                    {1, 2, 3, 4},
                    {4, 3, 2, 1}};
    permutatedRows(mat, m, n, r);
}
}
  
// This code has been contributed by 29AjayKumar


Python3




# Python program to find all
# permutations of a given row
  
# Function to find all
# permuted rows of a given row r
def permutatedRows(mat, m, n, r):
  
  
    # Creating an empty set
    s=set()
  
    # Count frequencies of
    # elements in given row r
    for j in range(n):
        s.add(mat[r][j])    
  
    # Traverse through all remaining rows
    for i in range(m):
  
        # we do not need to check
        # for given row r
        if i == r:
            continue
  
        # initialize hash i.e
        # count frequencies
        # of elements in row i
        for j in range(n):
            if mat[i][j] not in s:
  
                # to avoid the case when last
                # element does not match
                j = j - 2
                break;
        if j + 1 != n:
            continue
        print(i)
              
      
  
# Driver program to run the case
m = 4
n = 4
r = 3
mat = [[3, 1, 4, 2],
       [1, 6, 9, 3],
       [1, 2, 3, 4],
       [4, 3, 2, 1]]
  
permutatedRows(mat, m, n, r)
  
# This code is contributed
# by Upendra Singh Bartwal.


C#




// C# program to find all permutations of a given row 
using System;
using System.Collections.Generic;
  
class GFG 
      
static int MAX = 100; 
  
// Function to find all permuted rows of a given row r 
static void permutatedRows(int [,]mat, int m, int n, int r) 
    // Creating an empty set 
    HashSet<int> s = new HashSet<int>(); 
  
  
    // Count frequencies of elements in given row r 
    for (int j = 0; j < n; j++) 
        s.Add(mat[r, j]); 
  
    // Traverse through all remaining rows 
    for (int i = 0; i < m; i++) 
    
        // we do not need to check for given row r 
        if (i == r) 
            continue
  
        // initialize hash i.e; count frequencies 
        // of elements in row i 
        int j; 
        for (j = 0; j < n; j++) 
            if (!s.Contains(mat[i,j])) 
                break
        if (j != n) 
        continue
  
        Console.Write(i+", "); 
    
  
// Driver program to run the case 
public static void Main(String[] args) 
    int m = 4, n = 4,r = 3; 
    int [,]mat = {{3, 1, 4, 2}, 
                    {1, 6, 9, 3}, 
                    {1, 2, 3, 4}, 
                    {4, 3, 2, 1}}; 
    permutatedRows(mat, m, n, r); 
  
/* This code contributed by PrinciRaj1992 */


Javascript




<script>
  
// Javascript program to find all permutations of a given row
  
let MAX = 100;
    
// Function to find all permuted rows of a given row r
function permutatedRows(mat, m, n, r)
{
    // Creating an empty set
    let s = new Set();
    
    
    // Count frequencies of elements in given row r
    for (let j = 0; j < n; j++)
        s.add(mat[r][j]);
    
    // Traverse through all remaining rows
    for (let i = 0; i < m; i++)
    {
        // we do not need to check for given row r
        if (i == r)
            continue;
    
        // initialize hash i.e; count frequencies
        // of elements in row i
        let j;
        for (j = 0; j < n; j++)
            if (!s.has(mat[i][j]))
                break;
        if (j != n)
        continue;
    
        document.write(i+", ");
    }
}
  
  
// Driver program 
  
    let m = 4, n = 4,r = 3;
    let mat = [[ 3, 1, 4, 2],
               [1, 6, 9, 3],
               [1, 2, 3, 4],
               [4, 3, 2, 1]];
    permutatedRows(mat, m, n, r);
  
  
</script>


Output

0, 2, 

Time complexity: O(m*n) 
Auxiliary space: O(n)

Another approach to the solution is using the Standard Template Library(STL):  

CPP




// C++ program to find all permutations of a given row
#include<bits/stdc++.h>
#define MAX 100
  
using namespace std;
  
// Function to find all permuted rows of a given row r
void permutatedRows(int mat[][MAX], int m, int n, int r)
{
   for (int i=0; i<m&&i!=r; i++){
        if(is_permutation(mat[i],mat[i]+n,mat[r])) cout<<i<<",";
    }
}
  
// Driver program to run the case
int main()
{
    int m = 4, n = 4,r = 3;
    int mat[][MAX] = {{3, 1, 4, 2},
                      {1, 6, 9, 3},
                      {1, 2, 3, 4},
                      {4, 3, 2, 1}};
    permutatedRows(mat, m, n, r);
    return 0;
}


Java




// Java program to find all permutations of a given row
import java.util.*;
  
class gfg {
    // This function checks if two arrays are permutations
    // of each other
    static boolean is_permutation(int[] a, int[] b)
    {
        Arrays.sort(a);
        Arrays.sort(b);
        for (int i = 0; i < a.length; i++) {
            if (a[i] != b[i])
                return false;
        }
        return true;
    }
  
    // Function to find all permuted rows of a given row r
    static void permutatedRows(int[][] mat, int m, int n,
                               int r)
    {
        for (var i = 0; i < m && i != r; i++) {
            if (is_permutation(mat[i], mat[r]))
                System.out.print(i + ",");
        }
    }
  
    // Driver program to run the case
    public static void main(String[] args)
    {
        int m = 4, n = 4, r = 3;
        int[][] mat = { { 3, 1, 4, 2 },
                        { 1, 6, 9, 3 },
                        { 1, 2, 3, 4 },
                        { 4, 3, 2, 1 } };
        permutatedRows(mat, m, n, r);
    }
}
// This code is contributed by karandeep1234


Python3




# Python3 program to find all permutations of a given row
MAX = 100
  
# This function checks if two arrays are permutations of each other
def is_permutation(a, b):
    return sorted(a) == sorted(b)
      
# Function to find all permuted rows of a given row r
def permutatedRows(mat, m, n, r):
      
    for i in range(min(m, r)):
        if is_permutation(mat[i], mat[r]):
            print(i, end = ", ")
  
# Driver program to run the case
m = 4
n = 4
r = 3;
mat =  [[ 3, 1, 4, 2], [1, 6, 9, 3], [1, 2, 3, 4], [4, 3, 2, 1]];
              
permutatedRows(mat, m, n, r);
  
# This code is contributed by phasing17


C#




// C# program to find all permutations of a given row
using System;
using System.Collections.Generic;
  
class gfg 
{
  
  // This function checks if two arrays are permutations
  // of each other
  static bool is_permutation(int[] a, int[] b)
  {
    Array.Sort(a);
    Array.Sort(b);
    for (int i = 0; i < a.Length; i++) {
      if (a[i] != b[i])
        return false;
    }
    return true;
  }
  
  // Function to find all permuted rows of a given row r
  static void permutatedRows(int[][] mat, int m, int n,
                             int r)
  {
    for (var i = 0; i < m && i != r; i++) {
      if (is_permutation(mat[i], mat[r]))
        Console.Write(i + ",");
    }
  }
  
  // Driver program to run the case
  public static void Main(string[] args)
  {
    int m = 4, n = 4, r = 3;
    int[][] mat = { new [] { 3, 1, 4, 2 },
                   new [] { 1, 6, 9, 3 },
                   new [] { 1, 2, 3, 4 },
                   new [] { 4, 3, 2, 1 } };
    permutatedRows(mat, m, n, r);
  }
}
  
// This code is contributed by phasing17


Javascript




// JS program to find all permutations of a given row
  
let MAX = 100
  
// This function checks if two arrays are permutations of each other
function is_permutation(a, b)
{
    a.sort()
    b.sort()
    return (a.join("#")) == (b.join("#"))
}
  
  
// Function to find all permuted rows of a given row r
function permutatedRows(mat, m, n, r)
{
   for (var i=0; i<m&&i!=r; i++){
        if(is_permutation(mat[i], mat[r]))
            process.stdout.write(i + ",");
    }
}
  
// Driver program to run the case
let m = 4, n = 4,r = 3;
let mat =  [[ 3, 1, 4, 2],
            [1, 6, 9, 3],
            [1, 2, 3, 4],
            [4, 3, 2, 1]];
permutatedRows(mat, m, n, r);
  
// This code is contributed by phasing17.


Output

0,2,

Time Complexity: O(m*n), where m is the number of rows and n is the size of each row. We need to compare each row with the given row, so the time complexity is O(m*n).
Auxiliary Space : O(1). No extra space is used.

Exercise : 
Extend the above solution to work for an input matrix where all elements of a row don’t have to be distinct. (Hit: We can use Hash Map instead of a Hash Set)

 



Like Article
Suggest improvement
Previous
Next
Share your thoughts in the comments

Similar Reads