Open In App

Find number of transformation to make two Matrix Equal

Last Updated : 12 Sep, 2023
Improve
Improve
Like Article
Like
Save
Share
Report

Given two matrices A and B of order n*m. The task is to find the required number of transformation steps so that both matrices became equal, print -1 if it is not possible. 

Transformation step is as: 

  1. Select any one matrix out of two matrices. 
  2.  Choose either row/column of the selected matrix. 
  3.  Increment every element of select row/column by 1. 

Examples : 

Input : 
A[2][2]: 1 1
         1 1
B[2][2]: 1 2
         3 4
Output : 3
Explanation :
1 1   ->   1 2   ->   1 2   ->   1 2
1 1   ->   1 2   ->   2 3   ->   3 4

Input :
A[2][2]: 1 1
         1 0
B[2][2]: 1 2
         3 4
Output : -1
Explanation : No transformation will make A and B equal.

The key steps behind the solution of this problem are:

  • Incrementing any row of A[][] is same as decrementing the same row of B[][]. So, we can have the solution after having the transformation on only one matrix either incrementing or decrementing. 
So make A[i][j] = A[i][j] - B[i][j].
For example,
If given matrices are,
A[2][2] : 1 1  
          1 1
B[2][2] : 1 2
          3 4
After subtraction, A[][] becomes,
A[2][2] : 0 -1
         -2 -3 
  • For every transformation either 1st row/ 1st column element necessarily got changed, same is true for other i-th row/column.
  • If ( A[i][j] – A[i][0] – A[0][j] + A[0][0] != 0) then no solution exists.
  • Elements of 1st row and 1st column only leads to result.
     
// Update matrix A[][]
// so that only A[][]
// has to be transformed
for (i = 0; i < n; i++)
    for (j = 0; j < m; j++)
        A[i][j] -= B[i][j];

// Check necessary condition
// For condition for 
// existence of full transformation
for (i = 1; i < n; i++)
    for (j = 1; j < m; j++)
        if (A[i][j] - A[i][0] - A[0][j] + A[0][0] != 0)
            return -1;

// If transformation is possible
// calculate total transformation
result = 0;
for (i = 0; i < n; i++)
    result += abs(A[i][0])
for (j = 0; j < m; j++)
    result += abs(A[0][j] - A[0][0]);
return abs(result);

Implementation:

C++




// C++ program to find
// number of countOpsation
// to make two matrix equals
#include <bits/stdc++.h>
using namespace std;
  
const int MAX = 1000;
  
int countOps(int A[][MAX], int B[][MAX], 
             int m, int n)
{
    // Update matrix A[][]
    // so that only A[][]
    // has to be countOpsed
    for (int i = 0; i < n; i++)
        for (int j = 0; j < m; j++)
            A[i][j] -= B[i][j];
  
    // Check necessary condition
    // for condition for
    // existence of full countOpsation
    for (int i = 1; i < n; i++)
    for (int j = 1; j < m; j++)
        if (A[i][j] - A[i][0] - 
            A[0][j] + A[0][0] != 0)
        return -1;
  
    // If countOpsation is possible
    // calculate total countOpsation
    int result = 0;
    for (int i = 0; i < n; i++)
        result += abs(A[i][0]);
    for (int j = 0; j < m; j++)
        result += abs(A[0][j] - A[0][0]);
    return (result);
}
  
// Driver code
int main()
{
    int A[MAX][MAX] = { {1, 1, 1},
                        {1, 1, 1},
                        {1, 1, 1}};
    int B[MAX][MAX] = { {1, 2, 3},
                        {4, 5, 6},
                        {7, 8, 9}};
    cout << countOps(A, B, 3, 3) ;
    return 0;
}


C




// C program to find
// number of countOpsation
// to make two matrix equals
#include <stdio.h>
  
#define MAX 1000
  
int abs(int a)
{
  int abs = a;
  if(abs < 0)
    abs = abs * (-1);
  return abs;
}
  
int countOps(int A[][MAX], int B[][MAX], 
             int m, int n)
{
    // Update matrix A[][]
    // so that only A[][]
    // has to be countOpsed
    for (int i = 0; i < n; i++)
        for (int j = 0; j < m; j++)
            A[i][j] -= B[i][j];
  
    // Check necessary condition
    // for condition for
    // existence of full countOpsation
    for (int i = 1; i < n; i++)
    for (int j = 1; j < m; j++)
        if (A[i][j] - A[i][0] - 
            A[0][j] + A[0][0] != 0)
        return -1;
  
    // If countOpsation is possible
    // calculate total countOpsation
    int result = 0;
    for (int i = 0; i < n; i++)
        result += abs(A[i][0]);
    for (int j = 0; j < m; j++)
        result += abs(A[0][j] - A[0][0]);
    return (result);
}
  
// Driver code
int main()
{
    int A[MAX][MAX] = { {1, 1, 1},
                        {1, 1, 1},
                        {1, 1, 1}};
    int B[MAX][MAX] = { {1, 2, 3},
                        {4, 5, 6},
                        {7, 8, 9}};
    printf("%d",countOps(A, B, 3, 3));
    return 0;
}
  
// This code is contributed by kothavvsaakash.


Java




// Java program to find number of
// countOpsation to make two matrix
// equals
import java.io.*;
  
class GFG 
{
      
    static int countOps(int A[][], int B[][],
                        int m, int n)
    {
          
        // Update matrix A[][] so that only
        // A[][] has to be countOpsed
        for (int i = 0; i < n; i++)
            for (int j = 0; j < m; j++)
                A[i][j] -= B[i][j];
      
        // Check necessary condition for 
        // condition for existence of full
        // countOpsation
        for (int i = 1; i < n; i++)
            for (int j = 1; j < m; j++)
                if (A[i][j] - A[i][0] - 
                    A[0][j] + A[0][0] != 0)
                    return -1;
      
        // If countOpsation is possible
        // calculate total countOpsation
        int result = 0;
          
        for (int i = 0; i < n; i++)
            result += Math.abs(A[i][0]);
              
        for (int j = 0; j < m; j++)
            result += Math.abs(A[0][j] - A[0][0]);
              
        return (result);
    }
      
    // Driver code
    public static void main (String[] args)
    {
        int A[][] = { {1, 1, 1},
                      {1, 1, 1},
                      {1, 1, 1} };
                      
        int B[][] = { {1, 2, 3},
                      {4, 5, 6},
                      {7, 8, 9} };
                      
        System.out.println(countOps(A, B, 3, 3)) ;
  
    }
}
  
// This code is contributed by KRV.


Python3




# Python3 program to find number of
# countOpsation to make two matrix
# equals
def countOps(A, B, m, n):
  
    # Update matrix A[][] so that only
    # A[][] has to be countOpsed
    for i in range(n):
        for j in range(m):
            A[i][j] -= B[i][j];
  
    # Check necessary condition for 
    # condition for existence of full
    # countOpsation
    for i in range(1, n):
        for j in range(1, n):
            if (A[i][j] - A[i][0] -
                A[0][j] + A[0][0] != 0):
                return -1;
  
    # If countOpsation is possible
    # calculate total countOpsation
    result = 0;
  
    for i in range(n):
        result += abs(A[i][0]);
  
    for j in range(m):
        result += abs(A[0][j] - A[0][0]);
  
    return (result);
  
# Driver code
if __name__ == '__main__':
    A = [[1, 1, 1],
         [1, 1, 1],
         [1, 1, 1]];
  
    B = [[1, 2, 3],
         [4, 5, 6],
         [7, 8, 9]];
           
    print(countOps(A, B, 3, 3));
  
# This code is contributed by Rajput-Ji


C#




// C# program to find number of
// countOpsation to make two matrix
// equals
using System;
  
class GFG 
{
      
    static int countOps(int [,]A, int [,]B,
                        int m, int n)
    {
          
        // Update matrix A[][] so that only
        // A[][] has to be countOpsed
        for (int i = 0; i < n; i++)
            for (int j = 0; j < m; j++)
                A[i, j] -= B[i, j];
      
        // Check necessary condition for 
        // condition for existence of full
        // countOpsation
        for (int i = 1; i < n; i++)
            for (int j = 1; j < m; j++)
                if (A[i, j] - A[i, 0] - 
                    A[0, j] + A[0, 0] != 0)
                    return -1;
      
        // If countOpsation is possible
        // calculate total countOpsation
        int result = 0;
          
        for (int i = 0; i < n; i++)
            result += Math.Abs(A[i, 0]);
              
        for (int j = 0; j < m; j++)
            result += Math.Abs(A[0, j] - A[0, 0]);
              
        return (result);
    }
      
    // Driver code
    public static void Main ()
    {
        int [,]A = { {1, 1, 1},
                     {1, 1, 1},
                     {1, 1, 1} };
                          
        int [,]B = { {1, 2, 3},
                     {4, 5, 6},
                     {7, 8, 9} };
                          
    Console.Write(countOps(A, B, 3, 3)) ;
  
    }
}
  
// This code is contributed by nitin mittal.


PHP




<?php
// PHP program to find
// number of countOpsation
// to make two matrix equals
  
function countOps($A, $B
                  $m, $n)
{
    $MAX = 1000;
      
    // Update matrix A[][]
    // so that only A[][]
    // has to be countOpsed
    for ($i = 0; $i < $n; $i++)
        for ($j = 0; $j < $m; $j++)
            $A[$i][$j] -= $B[$i][$j];
  
    // Check necessary condition
    // for condition for
    // existence of full countOpsation
    for ($i = 1; $i < $n; $i++)
    for ($j = 1; $j < $m; $j++)
        if ($A[$i][$j] - $A[$i][0] - 
            $A[0][$j] + $A[0][0] != 0)
        return -1;
  
    // If countOpsation is possible
    // calculate total countOpsation
    $result = 0;
    for ($i = 0; $i < $n; $i++)
        $result += abs($A[$i][0]);
    for ($j = 0; $j < $m; $j++)
        $result += abs($A[0][$j] - $A[0][0]);
    return ($result);
}
  
    // Driver code
    $A = array(array(1, 1, 1),
               array(1, 1, 1),
               array(1, 1, 1));
                 
    $B = array(array(1, 2, 3),
               array(4, 5, 6),
               array(7, 8, 9));
    echo countOps($A, $B, 3, 3) ;
  
// This code is contributed by nitin mittal.
?>


Javascript




<script>
  
// JavaScript program to find number of
// countOpsation to make two matrix
// equals
function countOps(A, B, m, n)
{
      
    // Update matrix A[][] so that only
    // A[][] has to be countOpsed
    for (var i = 0; i < n; i++)
        for (var j = 0; j < m; j++)
            A[i][j] -= B[i][j];
  
    // Check necessary condition for 
    // condition for existence of full
    // countOpsation
    for (var i = 1; i < n; i++)
        for (var j = 1; j < m; j++)
            if (A[i][j] - A[i][0] - 
                A[0][j] + A[0][0] != 0)
                return -1;
  
    // If countOpsation is possible
    // calculate total countOpsation
    var result = 0;
      
    for (var i = 0; i < n; i++)
        result += Math.abs(A[i][0]);
          
    for (var j = 0; j < m; j++)
        result += Math.abs(A[0][j] - A[0][0]);
          
    return (result);
}
  
// Driver code
 var A = [ [1, 1, 1],
              [1, 1, 1],
              [1, 1, 1] ];
                   
 var B = [ [1, 2, 3],
              [4, 5, 6],
              [7, 8, 9] ];
                   
document.write(countOps(A, B, 3, 3)) ;
  
  
</script>


Output

12

Time Complexity: O (n*m)
Auxiliary Space: O(1)

 



Like Article
Suggest improvement
Previous
Next
Share your thoughts in the comments

Similar Reads