Matrix Chain Multiplication | DP-8
Last Updated :
20 Dec, 2022
Given the dimension of a sequence of matrices in an array arr[], where the dimension of the ith matrix is (arr[i-1] * arr[i]), the task is to find the most efficient way to multiply these matrices together such that the total number of element multiplications is minimum.
Examples:
Input: arr[] = {40, 20, 30, 10, 30}
Output: 26000
Explanation:There are 4 matrices of dimensions 40×20, 20×30, 30×10, 10×30.
Let the input 4 matrices be A, B, C and D.
The minimum number of multiplications are obtained by
putting parenthesis in following way (A(BC))D.
The minimum is 20*30*10 + 40*20*10 + 40*10*30
Input: arr[] = {1, 2, 3, 4, 3}
Output: 30
Explanation: There are 4 matrices of dimensions 1×2, 2×3, 3×4, 4×3.
Let the input 4 matrices be A, B, C and D.
The minimum number of multiplications are obtained by
putting parenthesis in following way ((AB)C)D.
The minimum number is 1*2*3 + 1*3*4 + 1*4*3 = 30
Input: arr[] = {10, 20, 30}
Output: 6000
Explanation: There are only two matrices of dimensions 10×20 and 20×30.
So there is only one way to multiply the matrices, cost of which is 10*20*30
Matrix Chain Multiplication using Recursion:
We can solve the problem using recursion based on the following facts and observations:
Two matrices of size m*n and n*p when multiplied, they generate a matrix of size m*p and the number of multiplications performed are m*n*p.
Now, for a given chain of N matrices, the first partition can be done in N-1 ways. For example, sequence of matrices A, B, C and D can be grouped as (A)(BCD), (AB)(CD) or (ABC)(D) in these 3 ways.
So a range [i, j] can be broken into two groups like {[i, i+1], [i+1, j]}, {[i, i+2], [i+2, j]}, . . . , {[i, j-1], [j-1, j]}.
- Each of the groups can be further partitioned into smaller groups and we can find the total required multiplications by solving for each of the groups.
- The minimum number of multiplications among all the first partitions is the required answer.
Follow the steps mentioned below to implement the approach:
- Create a recursive function that takes i and j as parameters that determines the range of a group.
- Iterate from k = i to j to partition the given range into two groups.
- Call the recursive function for these groups.
- Return the minimum value among all the partitions as the required minimum number of multiplications to multiply all the matrices of this group.
- The minimum value returned for the range 0 to N-1 is the required answer.
Below is the implementation of the above approach.
C++
#include <bits/stdc++.h>
using namespace std;
int MatrixChainOrder( int p[], int i, int j)
{
if (i == j)
return 0;
int k;
int mini = INT_MAX;
int count;
for (k = i; k < j; k++)
{
count = MatrixChainOrder(p, i, k)
+ MatrixChainOrder(p, k + 1, j)
+ p[i - 1] * p[k] * p[j];
mini = min(count, mini);
}
return mini;
}
int main()
{
int arr[] = { 1, 2, 3, 4, 3 };
int N = sizeof (arr) / sizeof (arr[0]);
cout << "Minimum number of multiplications is "
<< MatrixChainOrder(arr, 1, N - 1);
return 0;
}
|
C
#include <limits.h>
#include <stdio.h>
int MatrixChainOrder( int p[], int i, int j)
{
if (i == j)
return 0;
int k;
int min = INT_MAX;
int count;
for (k = i; k < j; k++)
{
count = MatrixChainOrder(p, i, k)
+ MatrixChainOrder(p, k + 1, j)
+ p[i - 1] * p[k] * p[j];
if (count < min)
min = count;
}
return min;
}
int main()
{
int arr[] = { 1, 2, 3, 4, 3 };
int N = sizeof (arr) / sizeof (arr[0]);
printf ( "Minimum number of multiplications is %d " ,
MatrixChainOrder(arr, 1, N - 1));
getchar ();
return 0;
}
|
Java
import java.io.*;
import java.util.*;
class MatrixChainMultiplication {
static int MatrixChainOrder( int p[], int i, int j)
{
if (i == j)
return 0 ;
int min = Integer.MAX_VALUE;
for ( int k = i; k < j; k++) {
int count = MatrixChainOrder(p, i, k)
+ MatrixChainOrder(p, k + 1 , j)
+ p[i - 1 ] * p[k] * p[j];
if (count < min)
min = count;
}
return min;
}
public static void main(String args[])
{
int arr[] = new int [] { 1 , 2 , 3 , 4 , 3 };
int N = arr.length;
System.out.println(
"Minimum number of multiplications is "
+ MatrixChainOrder(arr, 1 , N - 1 ));
}
}
|
Python3
import sys
def MatrixChainOrder(p, i, j):
if i = = j:
return 0
_min = sys.maxsize
for k in range (i, j):
count = (MatrixChainOrder(p, i, k)
+ MatrixChainOrder(p, k + 1 , j)
+ p[i - 1 ] * p[k] * p[j])
if count < _min:
_min = count
return _min
if __name__ = = '__main__' :
arr = [ 1 , 2 , 3 , 4 , 3 ]
N = len (arr)
print ( "Minimum number of multiplications is " ,
MatrixChainOrder(arr, 1 , N - 1 ))
|
C#
using System;
class GFG {
static int MatrixChainOrder( int [] p, int i, int j)
{
if (i == j)
return 0;
int min = int .MaxValue;
for ( int k = i; k < j; k++)
{
int count = MatrixChainOrder(p, i, k)
+ MatrixChainOrder(p, k + 1, j)
+ p[i - 1] * p[k] * p[j];
if (count < min)
min = count;
}
return min;
}
public static void Main()
{
int [] arr = new int [] { 1, 2, 3, 4, 3 };
int N = arr.Length;
Console.Write(
"Minimum number of multiplications is "
+ MatrixChainOrder(arr, 1, N - 1));
}
}
|
PHP
<?php
function MatrixChainOrder(& $p , $i , $j )
{
if ( $i == $j )
return 0;
$min = PHP_INT_MAX;
for ( $k = $i ; $k < $j ; $k ++)
{
$count = MatrixChainOrder( $p , $i , $k ) +
MatrixChainOrder( $p , $k + 1, $j ) +
$p [ $i - 1] *
$p [ $k ] * $p [ $j ];
if ( $count < $min )
$min = $count ;
}
return $min ;
}
$arr = array (1, 2, 3, 4, 3);
$N = sizeof( $arr );
echo "Minimum number of multiplications is " .
MatrixChainOrder( $arr , 1, $N - 1);
?>
|
Javascript
<script>
function MatrixChainOrder(p , i , j)
{
if (i == j)
return 0;
var min = Number.MAX_VALUE;
var k=0;
for (k = i; k < j; k++)
{
var count = MatrixChainOrder(p, i, k)
+ MatrixChainOrder(p, k + 1, j)
+ p[i - 1] * p[k] * p[j];
if (count < min)
min = count;
}
return min;
}
var arr = [ 1, 2, 3, 4, 3 ];
var N = arr.length;
document.write(
"Minimum number of multiplications is "
+ MatrixChainOrder(arr, 1, N - 1));
</script>
|
Output
Minimum number of multiplications is 30
The time complexity of the solution is exponential
Auxiliary Space: O(1)
Dynamic Programming Solution for Matrix Chain Multiplication using Memoization:
Below is the recursion tree for the 2nd example of the above recursive approach:
If observed carefully you can find the following two properties:
1) Optimal Substructure: In the above case, we are breaking the bigger groups into smaller subgroups and solving them to finally find the minimum number of multiplications. Therefore, it can be said that the problem has optimal substructure property.
2) Overlapping Subproblems: We can see in the recursion tree that the same subproblems are called again and again and this problem has the Overlapping Subproblems property.
So Matrix Chain Multiplication problem has both properties of a dynamic programming problem. So recomputations of same subproblems can be avoided by constructing a temporary array dp[][] in a bottom up manner.
Follow the below steps to solve the problem:
- Build a matrix dp[][] of size N*N for memoization purposes.
- Use the same recursive call as done in the above approach:
- When we find a range (i, j) for which the value is already calculated, return the minimum value for that range (i.e., dp[i][j]).
- Otherwise, perform the recursive calls as mentioned earlier.
- The value stored at dp[0][N-1] is the required answer.
Below is the implementation of the above approach
C++
#include <bits/stdc++.h>
using namespace std;
int dp[100][100];
int matrixChainMemoised( int * p, int i, int j)
{
if (i == j)
{
return 0;
}
if (dp[i][j] != -1)
{
return dp[i][j];
}
dp[i][j] = INT_MAX;
for ( int k = i; k < j; k++)
{
dp[i][j] = min(
dp[i][j], matrixChainMemoised(p, i, k)
+ matrixChainMemoised(p, k + 1, j)
+ p[i - 1] * p[k] * p[j]);
}
return dp[i][j];
}
int MatrixChainOrder( int * p, int n)
{
int i = 1, j = n - 1;
return matrixChainMemoised(p, i, j);
}
int main()
{
int arr[] = { 1, 2, 3, 4 };
int n = sizeof (arr) / sizeof (arr[0]);
memset (dp, -1, sizeof dp);
cout << "Minimum number of multiplications is "
<< MatrixChainOrder(arr, n);
}
|
Java
import java.io.*;
import java.util.*;
class GFG
{
static int [][] dp = new int [ 100 ][ 100 ];
static int matrixChainMemoised( int [] p, int i, int j)
{
if (i == j)
{
return 0 ;
}
if (dp[i][j] != - 1 )
{
return dp[i][j];
}
dp[i][j] = Integer.MAX_VALUE;
for ( int k = i; k < j; k++)
{
dp[i][j] = Math.min(
dp[i][j], matrixChainMemoised(p, i, k)
+ matrixChainMemoised(p, k + 1 , j)
+ p[i - 1 ] * p[k] * p[j]);
}
return dp[i][j];
}
static int MatrixChainOrder( int [] p, int n)
{
int i = 1 , j = n - 1 ;
return matrixChainMemoised(p, i, j);
}
public static void main (String[] args)
{
int arr[] = { 1 , 2 , 3 , 4 };
int n= arr.length;
for ( int [] row : dp)
Arrays.fill(row, - 1 );
System.out.println( "Minimum number of multiplications is " + MatrixChainOrder(arr, n));
}
}
|
Python3
import sys
dp = [[ - 1 for i in range ( 100 )] for j in range ( 100 )]
def matrixChainMemoised(p, i, j):
if (i = = j):
return 0
if (dp[i][j] ! = - 1 ):
return dp[i][j]
dp[i][j] = sys.maxsize
for k in range (i,j):
dp[i][j] = min (dp[i][j], matrixChainMemoised(p, i, k) + matrixChainMemoised(p, k + 1 , j) + p[i - 1 ] * p[k] * p[j])
return dp[i][j]
def MatrixChainOrder(p,n):
i = 1
j = n - 1
return matrixChainMemoised(p, i, j)
arr = [ 1 , 2 , 3 , 4 ]
n = len (arr)
print ( "Minimum number of multiplications is" ,MatrixChainOrder(arr, n))
|
C#
using System;
class GFG
{
static int [,] dp = new int [100, 100];
static int matrixChainMemoised( int [] p, int i, int j)
{
if (i == j)
{
return 0;
}
if (dp[i, j] != -1)
{
return dp[i, j];
}
dp[i, j] = Int32.MaxValue;
for ( int k = i; k < j; k++)
{
dp[i, j] = Math.Min(
dp[i, j], matrixChainMemoised(p, i, k)
+ matrixChainMemoised(p, k + 1, j)
+ p[i - 1] * p[k] * p[j]);
}
return dp[i,j];
}
static int MatrixChainOrder( int [] p, int n)
{
int i = 1, j = n - 1;
return matrixChainMemoised(p, i, j);
}
static void Main()
{
int [] arr = { 1, 2, 3, 4 };
int n = arr.Length;
for ( int i = 0; i < 100; i++)
{
for ( int j = 0; j < 100; j++)
{
dp[i, j] = -1;
}
}
Console.WriteLine( "Minimum number of multiplications is " +
MatrixChainOrder(arr, n));
}
}
|
Javascript
<script>
let dp = new Array(100);
for ( var i = 0; i < dp.length; i++)
{
dp[i] = new Array(2);
}
function matrixChainMemoised(p, i, j)
{
if (i == j)
{
return 0;
}
if (dp[i][j] != -1)
{
return dp[i][j];
}
dp[i][j] = Number.MAX_VALUE;
for (let k = i; k < j; k++)
{
dp[i][j] = Math.min(
dp[i][j], matrixChainMemoised(p, i, k) +
matrixChainMemoised(p, k + 1, j) +
p[i - 1] * p[k] * p[j]);
}
return dp[i][j];
}
function MatrixChainOrder(p, n)
{
let i = 1, j = n - 1;
return matrixChainMemoised(p, i, j);
}
let arr = [ 1, 2, 3, 4 ];
let n = arr.length;
for ( var i = 0; i < dp.length; i++)
{
for ( var j = 0; j < dp.length; j++)
{
dp[i][j] = -1;
}
}
document.write( "Minimum number of multiplications is " +
MatrixChainOrder(arr, n));
</script>
|
Output
Minimum number of multiplications is 18
Time Complexity: O(N3 )
Auxiliary Space: O(N2) ignoring recursion stack space
Dynamic Programming Solution for Matrix Chain Multiplication using Tabulation (Iterative Approach):
In iterative approach, we initially need to find the number of multiplications required to multiply two adjacent matrices. We can use these values to find the minimum multiplication required for matrices in a range of length 3 and further use those values for ranges with higher lengths.
Build on the answer in this manner till the range becomes [0, N-1].
Follow the steps mentioned below to implement the idea:
- Iterate from l = 2 to N-1 which denotes the length of the range:
- Iterate from i = 0 to N-1:
- Find the right end of the range (j) having l matrices.
- Iterate from k = i+1 to j which denotes the point of partition.
- Multiply the matrices in range (i, k) and (k, j).
- This will create two matrices with dimensions arr[i-1]*arr[k] and arr[k]*arr[j].
- The number of multiplications to be performed to multiply these two matrices (say X) are arr[i-1]*arr[k]*arr[j].
- The total number of multiplications is dp[i][k]+ dp[k+1][j] + X.
- The value stored at dp[1][N-1] is the required answer.
Below is the implementation of the above approach.
C++
#include <bits/stdc++.h>
using namespace std;
int MatrixChainOrder( int p[], int n)
{
int m[n][n];
int i, j, k, L, q;
for (i = 1; i < n; i++)
m[i][i] = 0;
for (L = 2; L < n; L++)
{
for (i = 1; i < n - L + 1; i++)
{
j = i + L - 1;
m[i][j] = INT_MAX;
for (k = i; k <= j - 1; k++)
{
q = m[i][k] + m[k + 1][j]
+ p[i - 1] * p[k] * p[j];
if (q < m[i][j])
m[i][j] = q;
}
}
}
return m[1][n - 1];
}
int main()
{
int arr[] = { 1, 2, 3, 4 };
int size = sizeof (arr) / sizeof (arr[0]);
cout << "Minimum number of multiplications is "
<< MatrixChainOrder(arr, size);
getchar ();
return 0;
}
|
C
#include <limits.h>
#include <stdio.h>
int MatrixChainOrder( int p[], int n)
{
int m[n][n];
int i, j, k, L, q;
for (i = 1; i < n; i++)
m[i][i] = 0;
for (L = 2; L < n; L++) {
for (i = 1; i < n - L + 1; i++)
{
j = i + L - 1;
m[i][j] = INT_MAX;
for (k = i; k <= j - 1; k++)
{
q = m[i][k] + m[k + 1][j]
+ p[i - 1] * p[k] * p[j];
if (q < m[i][j])
m[i][j] = q;
}
}
}
return m[1][n - 1];
}
int main()
{
int arr[] = { 1, 2, 3, 4 };
int size = sizeof (arr) / sizeof (arr[0]);
printf ( "Minimum number of multiplications is %d " ,
MatrixChainOrder(arr, size));
getchar ();
return 0;
}
|
Java
import java.util.*;
import java.io.*;
class MatrixChainMultiplication
{
static int MatrixChainOrder( int p[], int n)
{
int m[][] = new int [n][n];
int i, j, k, L, q;
for (i = 1 ; i < n; i++)
m[i][i] = 0 ;
for (L = 2 ; L < n; L++)
{
for (i = 1 ; i < n - L + 1 ; i++)
{
j = i + L - 1 ;
if (j == n)
continue ;
m[i][j] = Integer.MAX_VALUE;
for (k = i; k <= j - 1 ; k++)
{
q = m[i][k] + m[k + 1 ][j]
+ p[i - 1 ] * p[k] * p[j];
if (q < m[i][j])
m[i][j] = q;
}
}
}
return m[ 1 ][n - 1 ];
}
public static void main(String args[])
{
int arr[] = new int [] { 1 , 2 , 3 , 4 };
int size = arr.length;
System.out.println(
"Minimum number of multiplications is "
+ MatrixChainOrder(arr, size));
}
}
|
Python3
import sys
maxint = int ( 1e9 + 7 )
def MatrixChainOrder(p, n):
m = [[ 0 for x in range (n)] for x in range (n)]
for i in range ( 1 , n):
m[i][i] = 0
for L in range ( 2 , n):
for i in range ( 1 , n - L + 1 ):
j = i + L - 1
m[i][j] = maxint
for k in range (i, j):
q = m[i][k] + m[k + 1 ][j] + p[i - 1 ] * p[k] * p[j]
if q < m[i][j]:
m[i][j] = q
return m[ 1 ][n - 1 ]
arr = [ 1 , 2 , 3 , 4 ]
size = len (arr)
print ( "Minimum number of multiplications is " +
str (MatrixChainOrder(arr, size)))
|
C#
using System;
class GFG
{
static int MatrixChainOrder( int [] p, int n)
{
int [, ] m = new int [n, n];
int i, j, k, L, q;
for (i = 1; i < n; i++)
m[i, i] = 0;
for (L = 2; L < n; L++)
{
for (i = 1; i < n - L + 1; i++)
{
j = i + L - 1;
if (j == n)
continue ;
m[i, j] = int .MaxValue;
for (k = i; k <= j - 1; k++)
{
q = m[i, k] + m[k + 1, j]
+ p[i - 1] * p[k] * p[j];
if (q < m[i, j])
m[i, j] = q;
}
}
}
return m[1, n - 1];
}
public static void Main()
{
int [] arr = new int [] { 1, 2, 3, 4 };
int size = arr.Length;
Console.Write( "Minimum number of "
+ "multiplications is "
+ MatrixChainOrder(arr, size));
}
}
|
PHP
<?php
function MatrixChainOrder( $p , $n )
{
$m [][] = array ( $n , $n );
for ( $i = 1; $i < $n ; $i ++)
$m [ $i ][ $i ] = 0;
for ( $L = 2; $L < $n ; $L ++)
{
for ( $i = 1; $i < $n - $L + 1; $i ++)
{
$j = $i + $L - 1;
if ( $j == $n )
continue ;
$m [ $i ][ $j ] = PHP_INT_MAX;
for ( $k = $i ; $k <= $j - 1; $k ++)
{
$q = $m [ $i ][ $k ] + $m [ $k + 1][ $j ] +
$p [ $i - 1] * $p [ $k ] * $p [ $j ];
if ( $q < $m [ $i ][ $j ])
$m [ $i ][ $j ] = $q ;
}
}
}
return $m [1][ $n -1];
}
$arr = array (1, 2, 3, 4);
$size = sizeof( $arr );
echo "Minimum number of multiplications is " .
MatrixChainOrder( $arr , $size );
?>
|
Javascript
<script>
function MatrixChainOrder(p , n)
{
var m = Array(n).fill(0).map(x => Array(n).fill(0));
var i, j, k, L, q;
for (i = 1; i < n; i++)
m[i][i] = 0;
for (L = 2; L < n; L++)
{
for (i = 1; i < n - L + 1; i++)
{
j = i + L - 1;
if (j == n)
continue ;
m[i][j] = Number.MAX_VALUE;
for (k = i; k <= j - 1; k++)
{
q = m[i][k] + m[k + 1][j]
+ p[i - 1] * p[k] * p[j];
if (q < m[i][j])
m[i][j] = q;
}
}
}
return m[1][n - 1];
}
var arr = [ 1, 2, 3, 4 ];
var size = arr.length;
document.write(
"Minimum number of multiplications is "
+ MatrixChainOrder(arr, size));
</script>
|
Output
Minimum number of multiplications is 18
Time Complexity: O(N3 )
Auxiliary Space: O(N2)
Matrix Chain Multiplication (A O(N^2) Solution)
Printing brackets in Matrix Chain Multiplication Problem
Applications:
Minimum and Maximum values of an expression with * and +
Like Article
Suggest improvement
Share your thoughts in the comments
Please Login to comment...